MATHEMATICA BOHEMICA, Vol. 130, No. 3, pp. 283-300, 2005

Normalization of $MV$-algebras

I. Chajda, R. Halas, J. Kuhr, A. Vanzurova

I. Chajda, R. Halas, J. Kuhr, A. Vanzurova, Dept. of Algebra and Geometry, Palacky University Olomouc, Tomkova 40, 779 00 Olomouc, Czech Republic

Abstract: We consider algebras determined by all normal identities of $MV$-algebras, i.e. algebras of many-valued logics. For such algebras, we present a representation based on a normalization of a sectionally involutioned lattice, i.e. a $q$-lattice, and another one based on a normalization of a lattice-ordered group.

Keywords: $MV$-algebra, abelian lattice-ordered group, $q$-lattice, normalization of a variety

Classification (MSC 2000): 06D35, 06D05, 06F20, 08B20


Full text available as PDF (smallest), as compressed PostScript (.ps.gz) or as raw PostScript (.ps).

Access to the full text of journal articles on this site is restricted to the subscribers of Myris Trade. To activate your access, please contact Myris Trade at myris@myris.cz.


[Previous Article] [Next Article] [Contents of This Number] [Contents of Mathematica Bohemica]
[Full text of the older issues of Mathematica Bohemica at DML-CZ]