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Abstract

We show that the Reynolds defect measure for a dissipative weak solution of the com-
pressible Euler system vanishes for large time. This may be seen as a piece of evidence that
the dissipative solutions are asymptotically close to weak solutions in the turbulent regime;
whence suitable for describing compressible fluid flows in the long run.
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1 Introduction

In [2], we proposed the concept of dissipative weak (DW) solution to the compressible (isentropic)
Euler system:

∂t% + divxm = 0,

∂tm + divx

(
m⊗m

%

)
+∇xp(%) = 0, p(%) = a%γ, a > 0, γ > 1,

(1.1)

considered on a bounded domain Ω ⊂ Rd, d = 1, 2, 3, with impermeable boundary

m · n|∂Ω = 0, (1.2)
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and the initial conditions
%(0, ·) = %0, m(0, ·) = m0. (1.3)

A dissipative solution is a trio [%,m, E], where %, m satisfy (in the sense of distributions) the
augmented system

∂t% + divxm = 0,

∂tm + divx

(
m⊗m

%

)
+∇xp(%) = −divxR,

(1.4)

with the “turbulent” total energy E = E(t) - a non–increasing function of t – satisfying

E(τ±) ≤ E0 =

∫
Ω

[
1

2

|m0|2

%0

+ P (%0)

]
dx, E(τ±) ≥

∫
Ω

[
1

2

|m|2

%
+ P (%)

]
(τ, ·) dx for any τ > 0,

P (%) ≡ a

γ − 1
%γ.

(1.5)

Note that the total energy is defined as a convex l.s.c. function of [%,m] ∈ Rd+1,

1

2

|m|2

%
+ P (%) =


1
2
|m|2

%
+ P (%) if % > 0,

0 if % = 0, m = 0,
∞ otherwise.

The quantity R is a matrix valued measure, specifically,

R ∈ L∞([0,∞);M+(Ω; Rd×d
sym)) (1.6)

called Reynolds defect. Here, the symbolM+(Ω; Rd×d
sym)) denotes the cone of positively semi–definite

symmetric matrix valued measures on Ω, specifically,

〈R : [ξ ⊗ ξ]; g〉 ≥ 0 for any g ∈ C(Ω), g ≥ 0, ξ ∈ Rd.

The crucial property of (DW) solutions is the compatibility condition

E(τ+)−
∫

Ω

[
1

2

|m|2

%
+ P (%)

]
(τ, ·) dx ≥ d

∫
Ω

d (trace[R])(τ) for any τ ∈ [0,∞) (1.7)

for a certain constant d > 0. A detailed definition is given in Section 2 below.
Relation (1.7) can be interpreted in the way that the energy defect dominates the Reynolds

defect. As shown in [2], the (DW) solutions exist globally in time for any finite energy initial
data. Moreover, they can be identified as limits of consistent approximations arising in numerical
analysis (see [11], [12]) or as vanishing viscosity limits of solutions to the Navier–Stokes system (see
[10]). Note that, despite the large number of ill–posedness results (see e.g. Chiodaroli et al. [3],
[4], [5], [6]), the standard (admissible) weak solutions that correspond to the case R = 0 are not
known to exist globally in time for arbitrary initial data. (DW) solutions share many important
properties with the standard (admissible) weak solutions:
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• Compatibility. Any (DW) solution, for which [%,m] are continuously differentiable func-
tions, is a classical solution. In particular, R = 0.

• Weak–strong uniqueness. A (DW) solution coincides with the strong solution starting
from the same initial data as long as the latter exists.

Moreover, we have shown in [2], that the class of all (DW) solutions admits a semiflow selection.
In particular, the selected solutions are minimal with respect to the relation “≺”:

[%1,m1, E1] ≺ [%2,m2, E2] ⇔ E1(τ±) ≤ E2(τ±) for any τ > 0.

The minimal solutions dissipate the maximal amount of the total energy, which is in agreement
with the commonly accepted maximal dissipation principle, see e.g. Dafermos [7], [8], [9].

In this note, we show another interesting property of minimal (DW) solutions, namely

E(τ)−
∫

Ω

[
1

2

|m|2

%
+ P (%)

]
(τ, ·) dx → 0 as τ →∞. (1.8)

In view of (1.6), (1.7), the Reynolds defect R vanishes in the asymptotic limit for large times. This
fact may be seen as another piece of evidence supporting physical relevance of (minimal) (DW)
solutions.

The paper is organized as follows. In Section 2, we introduce the necessary preliminary material
and state the main result. In Section 3, we prove (1.8).

2 Preliminaries, main result

We recall the concept of dissipative weak solution introduced in [2, Definition 2.1].

Definition 2.1 (Dissipative weak (DW) solution). Let Ω ⊂ Rd, d = 1, 2, 3 be a bounded
domain. We say that [%,m, E] is a dissipative weak (DW) solution of the Euler system (1.1)–(1.4)
in [0,∞)× Ω if the following holds:

• % ≥ 0, and

% ∈ Cweak,loc([0,∞); Lγ(Ω)), m ∈ Cweak,loc([0,∞); L
2γ

γ+1 (Ω; Rd)), E ∈ BV [0,∞), E ≥ 0;

• [∫
Ω

%ϕ dx

]t=τ

t=0

=

∫ τ

0

∫
Ω

[
%∂tϕ + m · ∇xϕ

]
dx dt

for any τ ≥ 0, ϕ ∈ C1
c ([0,∞)× Ω);
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• [∫
Ω

m ·ϕ dx

]t=τ

t=0

=

∫ τ

0

∫
Ω

[
m · ∂tϕ +

m⊗m

%
: ∇xϕ + p(%)divxϕ

]
dx dt +

∫ τ

0

(∫
Ω

∇xϕ : dR(t)

)
dt

for any τ ≥ 0, ϕ ∈ C1
c ([0,∞)× Ω; Rd), ϕ · n|∂Ω = 0, where

R ∈ L∞(0, T ;M+(Ω; Rd×d
sym))

is called Reynolds defect ;

• E : [0,∞) → [0,∞) a non–decreasing function,

E(0−) ≡
∫

Ω

[
1

2

|m0|2

%0

+ P (%0)

]
dx,

E(τ+)−
∫

Ω

[
1

2

|m|2

%
+ P (%)

]
(τ, ·) dx ≥ d

∫
Ω

d (trace[R])(τ) for a certain constant d > 0

(2.1)
for any τ ≥ 0.

As a matter of fact, the (DW) solutions introduced in [2] are defined as a barycenter of a Young
measure {νt,x}t>0,x∈Ω, specifically

%(t, x) = 〈νt,x; %̃〉 , m(t, x) = 〈νt,x; m̃〉 ,

with the associated total energy

E =

∫
Ω

〈
νt,x;

1

2

|m̃|2

%̃
+ P (%̃)

〉
dx +

∫
Ω

dE,

where E is the so–called energy concentration defect. As observed in [10], the two definitions are
equivalent.

Following [2], we introduce the relation ≺ for two (DW) solutions [%1,m1, E1] and [%2,m2, E2]
starting from the same initial data [%0,m0],

[%1,m1, E1] ≺ [%2,m2, E2] ⇔ E1(τ±) ≤ E2(τ±) for all τ > 0.

Finally, we introduce the admissible (DW) solution, cf. [2, Definition 2.3].

Definition 2.2 (Admissible (DW) solutions). A dissipative weak solution [%,m, E] is called

admissible if it is minimal with respect to the relation ≺. Specifically, if [%̃, m̃, Ẽ] is another
dissipative solution starting from the same initial data and such that

[%̃, m̃, Ẽ] ≺ [%,m, E],

then
E(τ±) = Ẽ(τ±) for any τ > 0.
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We are ready to state our main result.

Theorem 2.3. Let Ω ⊂ Rd be a bounded Lipschitz domain. Let [%,m, E] be an admissible (DW)
solution of the isentropic Euler system in the sense of Definition 2.2.

Then

lim
τ→∞

E(τ) = lim
τ→∞

∫
Ω

[
1

2

|m|2

%
+ P (%)

]
(τ, ·) dx, (2.2)

in particular,
ess sup

t>τ
‖R(t)‖M(Ω;Rd×d

sym ) → 0 as τ →∞.

The rest of the paper is devoted to the proof of Theorem 2.3.

3 Asymptotic behavior – proof of Theorem 2.3

The analysis leans on the following two results proved in [2].

Proposition 3.1 ([2, Proposition 3.2]). Let T ≥ 0 and the initial data %T , mT ,

%T ≥ 0, ET =

∫
Ω

[
1

2

|mT |2

%T

+ P (%T )

]
dx < ∞,

be given.
Then the Euler system admits a global in time dissipative solution [%,m, E] in [T ;∞) in the

sense of Definition 2.1, specifically,

% ∈ Cweak,loc([T,∞); Lγ(Ω)), m ∈ Cweak,loc([T,∞); L
2γ

γ+1 (Ω; Rd)), E ∈ BV [T,∞) non–increasing,

such that

0 ≤ E(τ±) ≤ ET ,

E(τ+)−
∫

Ω

1

2

|m(τ, ·)|2

%(τ, ·)
P (%(τ, ·)) dx ≥ min

{
1

2
,

1

γ − 1

} ∫
Ω

d (trace[R])

for all τ > T .

Proposition 3.2 ([2, Theorem 2.5]). Given the initial data %0, m0,

%0 ≥ 0, E0 =

∫
Ω

[
1

2

|m0|2

%0

+ P (%0)

]
dx < ∞,

the Euler system admits a global in time admissible (DW) solution

% ∈ Cweak,loc([0,∞); Lγ(Td)), m ∈ Cweak,loc([0,∞); L
2γ

γ+1 (Td; Rd)), E ∈ BV [0,∞)

in the sense of Definition 2.2.
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We are ready to prove Theorem 2.3. Let [%,m, E] be an admissible (DW) solution of the
Euler system in [0,∞) × Ω, the existence of which is guaranteed by Proposition 3.2. As E is a
non–increasing function, it admits a limit

E∞ = lim
τ→∞

E(τ) ≥ 0.

Moreover, in view of (2.1),

E∞ ≥ lim sup
τ→∞

∫
Ω

[
1

2

|m|2

%
+ P (%)

]
(τ, ·) dx. (3.1)

Next, we claim the following result.

Lemma 3.3. Let T > 0 be arbitrary and denote

ET =

∫
Ω

[
1

2

|m|2

%
+ P (%)

]
(T, ·) dx.

Then
E∞ ≤ ET .

Proof. Supposing the contrary, meaning

ET > E∞, (3.2)

we may use Proposition 3.1 to construct a solution %̃, m̃ defined on the interval [T,∞), with the
initial data

%̃(T, ·) = %(T, ·), m̃(T, ·) = m(T, ·),
with the non–decreasing total energy Ẽ such that

Ẽ(τ±) ≤ ET for all τ ∈ (T,∞).

Finally, set

%̂ =


% for t ∈ [0, T ),

%̃ for t ∈ [T,∞),
m̂ =


m for t ∈ [0, T ),

m̃ for t ∈ [T,∞),

and

Ê(t) =


E for t ∈ [0, T ),

E(T−)(≥ ET ≥)Ẽ(T+), t = T,

Ẽ for t ∈ (T,∞).

Obviously, [%̂, m̂] with the energy Ê is a dissipative solutions (cf. [2, Proposition 5.1 - contin-
uation property]), and, in view of (3.2),

[%̂, m̂, Ê] ≺ [%,m, E] and lim
τ→∞

Ê(τ) ≤ ET < E∞

in contrast with maximality of [%,m, E].
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In view of Lemma 3.3, any maximal (DW) solution satisfies

E∞ = lim
τ→∞

E(τ) ≤
∫

Ω

[
1

2

|m|2

%
+ P (%)

]
(T, ·) dx

for any T > 0, in particular,

E∞ ≤ lim inf
τ→∞

∫
Ω

[
1

2

|m|2

%
+ P (%)

]
(τ, ·) dx,

which, together with (3.1), yields (2.2). We have proved Theorem 2.3.

4 Conclusion

We have shown that the “turbulent” energy E and the “intrinsic” energy∫
Ω

[
1

2

|m|2

%
+ P (%)

]
dx

of any admissible (DW) solution [%,m] of the compressible Euler system coincide in the asymptotic
limit as τ →∞, in particular, the limit∫

Ω

[
1

2

|m|2

%
+ P (%)

]
(τ, ·) dx → E∞ as τ →∞

exists. Accordingly, the Reynolds defect measure R in the momentum equation (1.4) vanishes
for τ → ∞, and the (DW) solutions behave asymptotically as the standard weak solutions. As
turbulent phenomena are usually attributed to the properties of the system in the long run, this
may be seen as a positive argument concerning physical relevance of the (DW) solutions. We
expect similar properties to hold for the (DW) solutions of the complete Euler system introduced
in [1].
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