Photosynthetica, 2017 (vol. 55), issue 2

Photosynthetica 2017, 55(2):201-209 | DOI: 10.1007/s11099-016-0650-7

Response of snapdragon (Antirrhinum majus L.) to blended water irrigation and arbuscular mycorrhizal fungi inoculation: uptake of minerals and leaf water relations

Y. I. El-Nashar1,2,*
1 Plant Production Department, College of Food and Agriculture Sciences, King Saud University., Riyadh, Saudi Arabia
2 Ornamental Plants and Landscape Gardening Research Department, Al-Montaza Garden, Horticultural Research Institute, ARC, Giza, Egypt

A greenhouse study was performed in order to investigate the effects of three arbuscular mycorrhizal fungi (AMF) species on vegetative growth, water relations, and mineral composition parameters of snapdragon (Antirrhinum majus cv. Bells white) under irrigation from different water sources. Five irrigation treatments included using purely desalinized (fresh) water (DW), as a control, three different blends of DW with saline ground water from a well with increasing salinity, and one with 100% of saline well water. Inoculation with AMF enhanced growth rates and a relative water content of snapdragon plants grown under well-water irrigation. AMF also improved the leaf water potential and increased water-use efficiency of the plants. Shoot and root dry masses were higher in the AMF-treated plants than those in AMF-free plants. In both shoots and roots, concentrations of total P, Ca2+, N, Mg2+, and K+ were higher in the AMF-treated plants compared with AMF-free plants under salt-stress conditions. Shoot Cl- and Na+ concentrations were lower in the AMF-treated plants than those in the AMF-free plants grown under well-water irrigation. Snapdragon plants exhibited a high degree of dependency on AMF; it improved plant growth rates and leaf water relations, particularly, with increasing salinity of irrigation water.

Keywords: blending water; leaf water relations; mineral composition; mycorrhizal fungi; salt water

Received: May 19, 2015; Accepted: May 19, 2016; Published: June 1, 2017Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
El-Nashar, Y.I. (2017). Response of snapdragon (Antirrhinum majus L.) to blended water irrigation and arbuscular mycorrhizal fungi inoculation: uptake of minerals and leaf water relations. Photosynthetica55(2), 201-209. doi: 10.1007/s11099-016-0650-7.
Download citation

References

  1. Al-Karaki G.N., Clark R.B.: Growth, mineral acquisition, and water use by mycorrhizal wheat grown under water stress. - J. Plant Nutr. 21: 263-276, 1998. Go to original source...
  2. Al-Karaki G.N., Hammad R., Rusan M.: Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. - Mycorrhiza 11: 43-47, 2001. Go to original source...
  3. Al-Karaki G.N.: Barley response to salt stress at varied phosphorus. - J. Plant Nutr. 20: 1635-1643, 1997. Go to original source...
  4. Al-Karaki G.N.: Growth of mycorrhizal tomato and mineral acquisition under salt stress. - Mycorrhiza 10: 51-54, 2000. Go to original source...
  5. Al-Karaki G.N.: Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. - Sci. Hortic.-Amsterdam 109: 1-7, 2006. Go to original source...
  6. Al-Khaliel A.S.: Effect of salinity stress on mycorrhizal association and growth response of peanut infected by Glomus mosseae. - Plant Soil Environ. 56: 318-324, 2010. Go to original source...
  7. Allen S.E.: Chemical Analysis of Ecological Materials. 2nd ed. Pp. 368. Blackwell Sci. Publ., Osney 1989.
  8. Amer A.F.: Effect of salinity stress, increasing gradually and suddenly treatments, on plant nutrient uptake and content of some carbohydrate fractions. - Egypt. J. Soil Sci. 39: 111-128, 1999.
  9. Aroca R., Del Mar Alguacil M., Vernieri P. et al.: Plant responses to drought stress and exogenous ABA application are modulated differently by mycorrhization in tomato and an ABA-deficient mutant (Sitiens). - Microb. Ecol. 56: 704-719, 2008. Go to original source...
  10. Augé R.M.: Arbuscular mycorrhizae and soil/plant water relations. - Can. J. Soil Sci. 84: 373-381, 2004. Go to original source...
  11. Augé R.M.: Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. - Mycorrhiza 11: 3-42, 2001. Go to original source...
  12. Bates L.S., Waldren R.P., Teare I.D.: Rapid determination of free proline for water stress studies. - Plant Soil 39: 205-207, 1973. Go to original source...
  13. Borde M., Dudhane M., Jite P.: Growth photosynthetic activity and antioxidant responses of mycorrhizal and non-mycorrhizal bajra (Pennisetum glaucum) crop under salinity stress condition. - Crop Prot. 30: 265-271, 2011. Go to original source...
  14. Bulíř P.: Testing method applied for evaluation of ornamental trees in the Czech Republic. - HortSci. 36: 154-161, 2009. Go to original source...
  15. Campanelli A., Ruta C., De Mastro G. et al.: The role of arbuscular mycorrhizal fungi in alleviating salt stress in Medicago sativa L. - Symbiosis 59: 65-76, 2013. Go to original source...
  16. Campanelli A., Ruta C., Morone-Fortunato I. et al.: Influence of mycorrhizal inoculation on the salt tolerance of artichoke hybrid seedlings. - J. Agric. Sci. Technol. 2: 1071-1079, 2012.
  17. Cantrell I.C., Linderman R.G.: Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. - Plant Soil 233: 269-281, 2001. Go to original source...
  18. Carter T.C., Grieve C.M.: Mineral nutrition, growth, and germination of Antirrhinum majus L. (Snapdragon) when produced under increasingly saline conditions. - HortSci. 43: 710-718, 2008. Go to original source...
  19. Çekiç F.O., Ünyayar S., Ortas I.: Effects of arbuscular mycorrhizal inoculation on biochemical parameters in Capsicum annuum grown under long term salt stress. - Turk. J. Bot. 36: 63-72, 2012.
  20. Chapman H.D., Pratt P.F.: Ammonium vandate-molybdate method for determination of phosphorus. - In: Chapman H.D., Pratt P.F. (ed.): Methods of Analysis for Soils, Plants and Water. 1st ed. Pp. 184-203. California Univ., California 1961. Go to original source...
  21. Colla G., Rouphael Y., Cardarelli M. et al..: Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. - Biol. Fertil. Soils 44: 501-509, 2008. Go to original source...
  22. Crespo R.J.: Impact of Arbuscular Mycorrhizal Fungi on the Physiology of Maize Genotypes under Variable Nitrogen and Phosphorus Levels. Pp. 92-117. Dr. Thesis Agro. Hort. Dep. Nebraska Univ. Lincoln 2015.
  23. DeHayr R., Gordon I.: Irrigation water quality. I-salinity and soil structure stability. - Natl. Res. Sci. 55: 55-60, 2004.
  24. El-Nashar Y.I.: Response of snapdragon (Antirrhinum majus L.) to blending water irrigation and arbuscular mycorrhizal fungi inoculation. - Acta Hortic. 1034: 379-388, 2014. Go to original source...
  25. Evelin H., Giri B., Kapoor R.: Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigat ion of ionic imbalance in NaCl-stressed Trigonellafoenumgraecum. - Mycorrhiza 22: 203-217, 2012. Go to original source...
  26. Evelin H., Kapoor R., Giri B.: Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. - Ann. Bot.-London 104: 1263-1280, 2009. Go to original source...
  27. Giri B., Kapoor R., Mukerji K.G.: Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. - Microbial Ecol. 54: 753-760, 2007. Go to original source...
  28. Giri B., Kapoor R., Mukerji K.G.: Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis. - Biol. Fertil. Soils 38: 170-175, 2003. Go to original source...
  29. Giri B., Kaur M., Mukerji K.G.: Growth responses and dependency of Sesbania aegyptiaca on vesicular arbuscular mycorrhiza in salt stressed soil. - Ann. Agr. Res. 20: 109-112, 1999.
  30. Giri B., Mukerji K.G.: Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. - Mycorrhiza 14: 307-312, 2004. Go to original source...
  31. Gutiérrez-Boem F.H., Thomas G.W.: Phosphorus nutrition and water deficits in field-grown soybeans. - Plant Soil 207: 87-96, 1999. Go to original source...
  32. Hatimi A.: Effect of salinity on the association between root symbionts and Acacia cyanophylla Lind: growth and nutrition. - Plant Soil 216: 93-101, 1999. Go to original source...
  33. Kaya C., Ashraf M., Sonmez O. et al.: The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity. - Sci. Hortic.-Amsterdam 121: 1-6, 2009. Go to original source...
  34. Kaya C., Higgs D., Ince F. et al.: Ameliorative effects of potassium phosphate on salt stressed pepper and cucumber. - J. Plant Nutr. 26: 807-820, 2003. Go to original source...
  35. Kaya C., Higgs D.: Response of tomato (Lycopersicon esculentum L.) cultivars to foliar application of zinc when grown in sand culture at low zinc. - Sci. Hortic.-Amsterdam 93: 53-64, 2002. Go to original source...
  36. Kaya C., Tuna A.L., Ashraf M. et al.: Improved salt tolerance of melon (Cucumis melo L.) by the addition of proline and potassium nitrate. - Environ. Exp. Bot. 60: 397-403, 2007. Go to original source...
  37. Khan H. R., Faiz S. M.A., Islam M. N. et al.: Effect of salinity, gypsum and Zn on mineral nutrition of rice. - Int. J. Trop. Agric. 10: 147-156, 1992.
  38. Kramer P.J., Boyer J.S.: Water Relation of Plants and Soils. Pp. 495. Academic Press, San Diego, CA, USA 1995. Go to original source...
  39. Kumar A., Mangla C., Kundu S. et al.: To understand arbuscular mycorrhizal fungi: A magical rootsymbiont for global sustainable agriculture. - Adv. Biores. 3: 78-84, 2012.
  40. Lovelli S., Perniola M., Ferrara A. et al.: Yield response factor to water (ky) and water use efficiency of Carthamus tinctorius L. and Solanum melongena L. - Agr. Water Manage. 92: 73-80, 2007. Go to original source...
  41. Mohiuddin A.S., Ahmed I.U., Faiz B. et al.: Growth, yield and chemical composition of rice (Oriza sativa L.) under saline water irrigation. - Russ. J. Ecol. 28: 289-301, 1997.
  42. Morte A., Lovisolo C., Schubert A.: Effect of drought stress on growth and water relation of the mycorrhizal association Helianthemum almeriense-Terfezia claveryi. - Mycorrhiza 10: 115-119, 2000. Go to original source...
  43. Munns R.: Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. - Plant Cell Environ. 16: 15-24, 1993. Go to original source...
  44. Nelsen C.E., Safir G.R.: The water relations of well-watered, mycorrhizal and non-mycorrhizal onion plants. - J. Am. Soc. Hortic. Sci. 107: 271-274, 1982.
  45. Nelson D.W., Sommers L.E.: Determination of total nitrogen in plant material. - Agron. J. 65: 109-112, 1973. Go to original source...
  46. Noufal E.H.A., Sadik M.K., Attia M.F.: Studies on tolerance of some plants to salinity. - Ann. Agric. Sci. 38: 1329-1346, 2000.
  47. Porcel R., Ruiz-Lozano J.M.: Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. - J. Exp. Bot. 55: 1743-1750, 2004. Go to original source...
  48. Ragab R., Malash N., Abdel-Gawad G. et al.: A holistic genetic integrated approach for irrigation, crop and field management. 1. The SALTMED model and its calibration using field data from Egypt and Syria. - Agr. Water Manage. 78: 67-88, 2005. Go to original source...
  49. Rahmaty R., Khara J.: Effects of vesicular arbuscular mycorrhiza Glomus intraradices on photosynthetic pigments, antioxidant enzymes, lipid peroxidation, and chromium accumulation in maize plants treated with chromium. - Turk. J. Biol. 35: 51-58, 2011.
  50. Rosendahl C.N., Rosendahl S.: Influence of vesicular-arbuscular mycorrhizal fungi (Glomus spp.) on the response of cucumber. - Environ. Exp. Bot. 31: 313-318, 1991. Go to original source...
  51. Ruiz-Lozano J.M., Azcón R., Gómez M.: Alleviation of salt stress by arbuscular-mycorrhizal Glomus species in Lactuca sativa plants. - Physiol. Plantarum 98: 767-772, 1996. Go to original source...
  52. Ruiz-Lozano J.M., Azcón R.: Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. - Physiol. Plantarum 95: 472-478, 1995. Go to original source...
  53. Ruiz-Lozano J.M., Azcón R., Gómez M.: Effects of arbuscularmycorrhizal Glomus species on drought tolerance: physiological and nutritional plant responses. - Appl. Environ. Microb. 61: 456-460, 1995. Go to original source...
  54. Ruiz-Lozano J.M.: Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. - Mycorrhiza 13: 309-317, 2003. Go to original source...
  55. SAS:SAS/STAT 9.2 User's Guide Introduction to Statistical Modeling with SAS/STAT Software. Statistics. SAS Institute Inc., Cary 2008.
  56. Sentenac H., Grignon C.: Effect of pH on orthophosphate uptakeby corn roots. - Plant Physiol. 77:136-141, 1985. Go to original source...
  57. Sheng M., Tang M., Chen H. et al.: Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. - Mycorrhiza 18: 287-296, 2008. Go to original source...
  58. Shokri S., Maadi B.: Effect of arbuscular mycorrhizal fungus on the mineral nutrition and yield of Trifolium alexandrinum plants under salinity stress. - J. Agron. 8: 79-83, 2009. Go to original source...
  59. Smith S.E., Read D.J.: Mycorrhizal Symbiosis, 3rd ed. Pp. 11-145. Academic Press, San Diego 2008. Go to original source...
  60. Steel R.G., Torrie J.H.: Principles and Procedures of Statistics. Pp. 232. Mc Graw-Hill, New York 1980.
  61. Subramanian K.S., Charest C.: Nutritional, growth, and reproductive responses of maize (Zea mays L.) to arbuscular mycorrhizal inoculation during and after drought stress at tasselling. - Mycorrhiza 7: 25-32, 1997. Go to original source...
  62. Vanaja M., Yadav S.K., Archana G. et al.: Response of C4 (maize) and C3 (sunflower) crop plants to drought stress and enhanced carbon dioxide concentration. - Plant Soil Environ. 57: 207-215, 2011. Go to original source...
  63. Wu Q.S., Xia R.X.: Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. - J. Plant Physiol. 163: 417-425, 2006. Go to original source...
  64. Wu Q.S., Zou Y.N.: Beneficial roles of arbuscular mycorrhizas in citrus seedlings at temperature stress. - Sci. Hortic.-Amsterdam 125: 289-293, 2010.
  65. Zhu X.C., Song F.B., Liu S.Q. et al.: Arbuscular mycorrhizal improves photosynthesis and water status of Zea mays L. under drought stress. - Plant Soil Environ. 58: 186-191, 2012. Go to original source...