Photosynthetica, 2014 (vol. 52), issue 2

Photosynthetica 2014, 52(2):247-252 | DOI: 10.1007/s11099-014-0031-z

Effects of arbuscular mycorrhizal fungi on photosynthesis, carbon content, and calorific value of black locust seedlings

X. Q. Zhu1, C. Y. Wang2, H. Chen2, M. Tang2,*
1 College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
2 College of Forestry, Northwest A&F University, Yangling, Shaanxi, China

Arbuscular mycorrhizal fungi (AMF) form symbioses with many plants. Black locust (Robinia pseudoacacia L.) is an important energy tree species that can associate with AMF. We investigated the effects of AMF (Rhizophagus irregularis and Glomus versiforme) on the growth, gas exchange, chlorophyll (Chl) fluorescence, carbon content, and calorific value of black locust seedlings in the greenhouse. The total biomass of the arbuscular mycorrhizal (AM) seedlings was 4 times greater than that of the nonmycorrhizal (NM) seedlings. AMF greatly promoted the photosynthesis of black locust seedlings. AM seedlings had a significantly greater leaf area, higher carboxylation efficiency, Chl content, and net photosynthetic rate (P N) than NM seedlings. AMF also significantly increased the effective photochemical efficiency of PSII and significantly enhanced the carbon content and calorific value of black locust seedlings. Seedlings inoculated with G. versiforme had the largest leaf area and highest biomass, Chl content, P N, and calorific value.

Keywords: chlorophyll fluorescence; gas exchange; growth; symbiosis

Received: July 6, 2013; Accepted: September 30, 2013; Published: June 1, 2014Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Zhu, X.Q., Wang, C.Y., Chen, H., & Tang, M. (2014). Effects of arbuscular mycorrhizal fungi on photosynthesis, carbon content, and calorific value of black locust seedlings. Photosynthetica52(2), 247-252. doi: 10.1007/s11099-014-0031-z.
Download citation

References

  1. Balat, M.: Bio-oil production from pyrolysis of black locust (Robinia pseudoacacia) wood. - Energ. Explor. Exploit. 28: 173-186, 2010. Go to original source...
  2. Bao, S.D.: [Soil and Agricultural Chemistry Analysis (3rd ed.)] Pp 114. China Agriculture Press, Beijing 2000. [In Chinese]
  3. Barrett, R.P., Mebrahtu, T., Hanover, J.W.: Black locust: a multipurpose tree species for temperate climates. - In: Janick, J., Simon, J.E. (ed): Advances in New Crops. Timber Press, Portland 1990.
  4. Bongarten, B.C., Huber, D.A., Apsley, D.K.: Environmental and genetic influences on short rotation biomass production of black locust (Robinia pseudoacacia L.) in the Georgia Piedmont. - Forest Ecol. Manag. 55: 315-331, 1992. Go to original source...
  5. Carpenter, S.B., Eigel, R.A.: Reclaiming southern Appalachian surface mines with black locust fuel plantations. - In: Carpenter, S.B. (ed.): Symposium on Surface Mining Hydrology, Sedimentology, and Reclamation. Pp. 221-227, University of Kentucky, Lexington, KY, 1979.
  6. Demirbas, A.: Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. - Prog. Energ. Combust. 31: 171-192, 2005. Go to original source...
  7. Demmig-Adams, B., Cohu, C.M., Muller, O., Adams, W.W. III: Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons. - Photosynth. Res. 113: 75-88, 2012. Go to original source...
  8. Fang, S.Z., Zhai, X.C., Wan, J., Tang, L.Z.: Clonal variation in growth, chemistry and calorific value of new poplar hybrids at nursery stage. - Biomass Bioenerg. 54: 303-311, 2013. Go to original source...
  9. Gao, J.F.: [Leaf area measurement method.] - In: Gao J.F. (ed.): [Experimental Guidance for Plant Physiology.] Pp. 88. High Education Press, Beijing 2006. [In Chinese]
  10. Gao, K., Zhu, T.X., Xu, S.T., Han, G.D.: [Effects of different environments on caloric value, C, N and ash contents of Helianthus tuberosus L's tubers.] - Crops 2: 17-19, 2011. [In Chinese]
  11. Gasol, C.M., Brun, F., Mosso, A., Rieradevall, J., Gabarrell, X.: Economic assessment and comparison of acacia energy crop with annual traditional crops in Southern Europe. - Energ. Policy 38: 592-597, 2010. Go to original source...
  12. Genty, B., Braintais, J.M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. - Biochim. Biophys. Acta - Gen. Subjects 990: 87-92, 1989. Go to original source...
  13. Geyer, W.A., Walawender, W.P.: Biomass properties and gasification behavior of young black locust. - Wood Fiber Sci. 26: 354-359, 1994.
  14. Giovannetti, M., Mosse, B.: An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. - New Phytol. 84: 489-500, 1980. Go to original source...
  15. Gong, M.G., Tang, M., Chen, H., Zhang, Q.M., Feng, X.X.: Effects of two Glomus species on the growth and physiological performance of Sophora davidii seedlings under water stress. - New Forest. 44: 399-408, 2013. Go to original source...
  16. González-García, S., Gasol, C.M., Moreira, M.T. et al.: Environmental assessment of Acacia (Robinia pseudoacacia L.)-based ethanol as potential transport fuel. - Int. J. Life Cycle Assess. 16: 465-477, 2011. Go to original source...
  17. González-García, S., Moreira, M.T., Feijoo, G., Murphy, R.J.: Comparative life cycle assessment of ethanol production from fast-growing wood crops (black locust, eucalyptus and poplar). - Biomass Bioenerg. 39: 378-388, 2012. Go to original source...
  18. Gruenewald, H., Brandt, B.K.V., Schneider, B.U. et al.: Agroforestry systems for the production of woody biomass for energy transformation purposes. - Ecol. Eng. 29: 319-328, 2007. Go to original source...
  19. Grünewald, H., Böhm, C., Quinkenstein, A. et al.: Robinia pseudoacacia L.: a lesser known tree species for biomass production. - Bioenerg. Res. 2: 123-133, 2009. Go to original source...
  20. Jongen, M., Fay, P., Jones, M.B.: Effects of elevated carbon dioxide and arbuscular mycorrhizal infection on Trifolium repens. - New Phytol. 132: 413-423, 1996. Go to original source...
  21. Kaschuk, G., Kuyper, T.W., Leffelaar, P.A. et al.: Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? - Soil Biol. Biochem. 41: 1233-1244, 2009. Go to original source...
  22. Krüger, M., Krüger, C., Walker, C., Stockinger, H., Schüßler, A.: Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. - New Phytol. 193: 970-984, 2012. Go to original source...
  23. Kumar, R., Pandey, K.K., Chandrashekar, N., Mohan, S.: Study of age and height wise variability on calorific value and other fuel properties of Eucalyptus hybrid, Acacia auriculaeformis and Casuarina equisetifolia. - Biomass Bioenerg. 35: 1339-1344, 2011. Go to original source...
  24. Lamlom, S.H., Savidge, R.A.: A reassessment of carbon content in wood: variation within and between 41 North American species. - Biomass Bioenerg. 25: 381-388, 2003. Go to original source...
  25. Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence - a practical guide. - J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  26. Olesniewicz, K.S., Thomas, R.B.: Effects of mycorrhizal colonization on biomass production and nitrogen fixation of black locust (Robinia pseudoacacia L.) seedlings grown under elevated atmospheric carbon dioxide. - New Phytol. 142: 133-140, 1999. Go to original source...
  27. Phillips, J.M., Hayman, D.S.: Improved procedure for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. - Trans. Br. Mycol. Soc. 55: 158-161, 1970. Go to original source...
  28. Prakash, C.B., Murray, F.E.: A review on wood waste burning. - Pulp Pap. - Canada 73: 70-75, 1972.
  29. Ren, H., Peng, S.L., Liu, H.X., Cao, H.L., Huang, Z.L.: [The caloric value of main plant species at Dinghushan, Guangdong, China.] - Acta. Phytoecol. Sin. 23: 148-154, 1999. [In Chinese]
  30. Requena, N., Jimenez, I., Toro, M., Barea, J.M.: Interactions between plant-growth-promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi and Rhizobium spp. in the rhizosphere of Anthyllis cytisoides, a model legume for revegetation in Mediterranean semi-arid ecosystems. - New Phytol. 136: 667-677, 1997. Go to original source...
  31. Sheng, M., Tang, M., Chen, H. et al.: Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. - Mycorrhiza 18: 287-296, 2008. Go to original source...
  32. Smith, S.E., Read, D.J.: Arbuscular mycorrhizas. - In: Smith, S.E., Read, D.J. (3rd ed.): Mycorrhizal Symbiosis. Pp. 31-134. Academic Press, New York 2008. Go to original source...
  33. Sun X.G., Tang M.: Comparison of four routinely used methods for assessing root colonization by arbuscular mycorrhizal fungi. - Botany 90: 1073-1083, 2012. Go to original source...
  34. Takai, T., Kondo, M., Yano, M., Yamamoto, T.: A quantitative trait locus for chlorophyll content and its association with leaf photosynthesis in rice. - Rice 3: 172-180, 2010. Go to original source...
  35. Tian, C.J., He, X.Y., Zhong, Y., Chen, J.K.: Effect of inoculation with ecto- and arbuscular mycorrhizae and Rhizobium on the growth and nitrogen fixation by black locust, Robinia pseudoacacia. - New Forest. 25: 125-131, 2003. Go to original source...
  36. Wright, D.P., Scholes, J.D., Read, D.J.: Effects of VA mycorrhizal colonization on photosynthesis and biomass production of Trifolium repens L. - Plant Cell Environ. 21: 209-216, 1998. Go to original source...
  37. Wu, Q.S., Xia, R.X.: Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. - J. Plant Physiol. 163: 417-425, 2006. Go to original source...
  38. Zai, X.M., Zhu, S.N., Qin, P. et al.: Effect of Glomus mosseae on chlorophyll content, chlorophyll fluorescence parameters, and chloroplast ultrastructure of beach plum (Prunus maritima) under NaCl stress. - Photosynthetica 50: 323-328, 2012. Go to original source...
  39. Zhu, X.G., Long, S.P., Ort, D.R.: What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? - Curr. Opin. Biotechnol. 19: 153-159, 2008. Go to original source...