Velké významné infrastruktury, 22.11.2019.
This year marks the...
Date | Lecture title | |||
1. | 15.02 | Introductions, lecture series overview, spectroscopy, solid-state physics | Video | Slides |
2. | 01.03 | Crystal structures, Wyckoff positions, point and space groups, classification of optical vibrations | Video | Slides |
3. | 08.03 | Maxwell’s equations in vacuum, plane waves, polarized light, Stokes parameters, Poincare sphere | Video | Slides |
4. | 22.3 | Maxwell’s equations in media, polarizability, dielectric function, Lorentz and Drude model | Video | Slides |
5. | 12.04 | Analytical properties of dielectric function, Kramers-Kronig relations, Sellmeier, poles, Cauchy | Video | Slides |
6. | 26.04 | Applications of Lorentz & Drude models to insulators (semiconductors, oxides) & metals, polaritons | Video | Slides |
7. | 10.05 | Electronic band structure, direct and indirect band gaps, Fermi’s Golden Rule | Video | Slides |
8. | 24.05 | Free electrons, effective masses in semiconductors, direct-gap absorption, excitons | Video | Slides |
9. | 14.06 | Interband transitions, van Hove singularities, critical-point lineshapes | Video | Slides |
10. | 21.06 | Photoluminescence, Einstein coefficients, quantum confinement, quantum wells, wires, and dots | Video | Slides |
11. | 28.06 | Applications I: Anisotropic material | Video | Slides |
12. | 12.07 | Applications II: Properties of thin films, stress/strain, deformation potentials | Video | Slides |