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This course starts from scratch and provides students with the background 

necessary for the understanding of the fractional calculus. 

It is surprisingly, but most scientists and engineers remain unaware of 

Fractional Calculus; it is not being taught in schools and colleges; and others 

remain skeptical of this field. There are several reasons for that: several of the 

definitions proposed for fractional derivatives were inconsistent, meaning they 

worked in some cases but not in others. The mathematics involved appeared 

very different from that of integer order. There were almost no practical 

applications of this field, and it was considered by many as an abstract area 

containing only mathematical manipulations of little or no use. But recently, 

the paradigm began to shift from pure mathematical formulation to 

applications in various fields. During the last decade Fractional Calculus has 

been applied to almost every field of science, engineering, and mathematics. 

Some of the areas where Fractional Calculus has made a profound impact 
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include viscoelasticity and rheology, electrical engineering, electrochemistry, 

biology, biophysics and bioengineering, signal and image processing, 

mechanics, mechatronics, physics, and control theory.   

1. HINTS AND MOTIVATION 

1.1. Heat and mass transfer 

Let us solve a wave equation 
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by the factorization method. With this in mind, we factorize a differential 
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 according to well known algebraic formula a2 – b2 =       

= (a – b)(a – b), as a result equation (1.1) becomes 
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It follows immediately from (1.2) that solution is a sum of two functions f and 

ϕ, each of them is solution of the equations 
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The solutions of equations (1.3a, b) can be easily found by the method of 

characteristics; they read 
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 f(t, x) = f(x – t), ϕ (t, x) = ϕ (x + t). (1.4) 

A study of heat and mass transfer requires the solution of parabolic 

equations of the form 
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An attractive idea of solving this equation is by using the factorization 

method as well. Formally factorizing differential operator yields 
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Let us consider the equation formed by the right multiplier of the 

differential operator 
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The solution of the latter is the solution of the equation (1.6) as well. It is 

worth to note that according Fick’s and Fourier’s laws, the heat and mass 

fluxes equal to the gradients of the concentration and temperature, 

respectively. So, in order to determine the fluxes we need to know the spatial 

distribution of the concentration or temperature. But rewriting equation (1.7) 

in the following form 
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we arrive at the very important conclusion that flux in some point x = x0 can 

be found without knowledge of the spatial temperature distribution as a 

fractional derivative of 1/2 order of the temperature with respect to time.  

1.2. Motion in one direction 

The motion of a system having one degree of freedom is said to take place 

in one dimension. The most general form of the Lagrangian of such system in 

fixed external condition is  

 L = 0.5 m(dx/dt)2 – U(x). (2.1) 

The equations of motion corresponding to these Lagrangians can be 

integrated in a general form. We can start from the first integral of this 

equation, which gives the law of the energy conservation 

 0.5m(dx/dt)2 + U(x) = E, (2.2) 

where E is the total energy of a system.  

This a first-order differential equation can be integrated immediately 

 t = ∫ − )(
5.0

xUE
dxm + constant. (2.3) 

Since the kinetic energy is essentially positive, the total energy always 

exceeds the potential one, i. e. the motion can take place only in those regions 

of space where U(x) < E.  The points at which the potential energy equals the 

total energy, 

 U(x) = E, (2.4) 
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give the limits of the motion. A finite motion in one dimension is 

oscillatory, the particle moving repeatedly back and forth between two points 

in the potential well (say between points x1 and x2 in Fig.1). 

U = E

x1 x2

U 

x

x1(U ) x2(U )

 

Fig. 1. The motion of particle in potential well.  

The period T of the oscillation, i.e. the time during which the particles 

passes from x1 and x2 and back, is twice the time from x1 to x2

 T(E) = ∫ −

)(

)(
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1
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Ex
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dxm , (2.5) 

where x1(E) and x2(E) are roots of equation (2.4) for the given value of E. This 

formula gives the period of the motion as a function of the total energy of the 

particle if the potential energy is known. Usually, for example from an 
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experiment, the period of oscillation is known. Therefore, let us consider to 

what extent the form of the potential energy U(x) of a field in which a particle 

is oscillating can be deduced from a knowledge of the period of oscillation T 

as a function of the total energy E. Mathematically, this involves the solution 

of the integral equation (2.5), in which U(x) is regarded as unknown and T(E) 

as known.  

We shall assume that the required function U(x) has only one minimum in 

the region of space considered. For convenience, we take the origin at the 

position of minimum potential energy, and take this minimum energy to be 

zero (see Fig. 1). In the integral (2.5) we regard the x as a function of U. The 

function x(U) is two-valued. Accordingly, the integral (2.5) must be divided 

into two parts before replacing dx by (dx/dU)dU: one from x = x1 to x = 0 and 

the other from x = 0 to x = x2. We shall denote the function x(U) in these two 

ranges by x = x1(U) and x = x2(U), respectively. 

The limits of integration with respect to U are 0 and E, so that we have 
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Dividing both sides of this equation by (α – E)1/2, where α is a parameter, 

and integrating with respect to E from 0 to α result in 
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or, changing the order of integration, 
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The integral over E is reduced to the Beta function B(1/2, 1/2) (for 

definition of the Beta function see (3.8)) by substitution u = (E – U)/(α – U); 

its value is π. The integral over U is thus trivial, and we have 

 ∫ −
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dEET = π(2m)1/2[x2(α) – x1(α)], 

since x2(0) = x1(0) = 0. Writing U in place of α yields the final result: 

 x2(U) – x1(U) = π  –1(2m)–1/2
∫ −
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dEET
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Thus the known function T(E) can be used to determine the difference             

x2(U) – x1(U), whereas the functions x1(U) and x2(U) themselves remain 

indeterminate. The indeterminacy of the solution is removed if we impose the 

condition that the curve U = U(x) must be symmetrical about the U - axis, i. e. 

that x2(U) = – x1(U) = x(U). In this case, the formula (2.7) gives for x(U) the 

unique expression 

 x(U) =  0.5π  –1(2m)–1/2
∫ −

U

EU
dEET

0

)( . (2.8) 

As you will see later, formula (2.8) can be rewritten in the following form 

 x(U) =  (8πm)1/2I1/2T(E), 

where I1/2f(x) is the fractional integral of order 1/2.  
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2. THE FRACTIONAL INTEGRAL OF ORDER α 

I would like to recall you Cauchy formula for repeated integration, that 

reduces the calculation of the n - fold primitive of a function f(t) to a single 

integral of the convolution type: 

 Inf(t) ≡ ∫ ∫ = ∫
t t t

ndttf
0 0 0

))((... ∫ −−
−

t
n dft

n 0

1 )()(
)!1(

1 τττ , (3.1) 

where t > 0, n is a positive integer. 

Now we are ready to make a very important step leading us to the 

fractional integral. To this end, let us remember the properties of the Gamma 

function Γ(z) and its relation with the factorial of a non-negative integer n, 

denoted by n!: 

 (n – 1)! = Γ(n), Γ(n + 1) = nΓ(n), Γ(z + 1) = zΓ(z), Re z > 0, (3.2) 

 Γ(1) = Γ(2) = 1, Γ(1/2) = π 1/2, Γ(3/2) = π 1/2/2, (3.2a) 

  Γ(–1/2) = – 2π1/2, Γ(–3/2) = (4/3) π1/2,  (3.2b) 

The gamma function is commonly defined by a definite integral due to 

Leonhard Euler 

 . (3.3) ∫
∞ −−=Γ
0

1)( duuez zu

Extending equation (1.1) from positive integer values of the index n to any 

positive real values α yields the Fractional Integral of order(S1)  α > 0: 

 Iαf(t) = ∫ −−
Γ

t
dft
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α . (3.4) 
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It is easy to see from equation (3.1) that applying n-fold differential 

operator Dn ≡ dn/dt n to In results in the identity operator I0 = E; this means  

 DnInf(t) = I0f(t) = Ef(t) = f(t). (3.5) 

From equations (3.4) and (3.5) an interesting conjecture can be deduced:  

since 

 I0f(t)  = ∫ −−
Γ

τ

τττ
0
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1 dft = f(t), (3.6) 

the function  

 F0(t) = t – 1/Γ(0) = δ(t), (3.6a) 

is the Dirac δ - function.  

I would like to recall that the Dirac δ - function can be loosely thought of 

as a function on the real line which is zero everywhere except at the origin, 

where it is infinite 
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and which is also constrained to satisfy the identity 

 . (3.6c) ∫
+∞

∞−
= 1)( dxxδ

It is worthy of note that the Dirac δ - function can be defined more strictly 

as a linear functional 

 , (3.6d) ∫
+∞

∞−
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where f(x) is so-called test function (conventional and well-behaved function).  
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Moreover, it can be shown that functions 

 F– n(t) = t – n – 1/Γ(– n) = δ (n)(t), n = 0, 1, .... (3.6b) 

are the generalized derivatives of order n of the Dirac delta function.  

It can be shown that the I operator is both commutative and additive; that is 

 IαI βf(t) = I βIαf(t) = Iα + βf(t) = ∫ −+−
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t
dft
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This property is called the semigroup property of fractional integral operators.  

  Let us derive the following important and common result of the action of Iα 

operator on the power function tβ. To accomplish this, the Eulerian integral,   

i. e. the Beta function can be used:  

 B(q, p) = = Γ(p) Γ(q)/ Γ(p + q), Re p, q > 0. (3.8) ∫ −−−
1

0
11)1( duuu qp

So, we have to take the integral 

 Iα tβ  = ∫ −−
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Introducing a new variable u = τ/t, integral reduces to the Beta function of the 

following form 
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From Eqs. (3.8) and (3.10) it immediately follows the final result: 

 Iα tβ = tα + β Γ(β + 1)/ Γ(α + β + 1). (3.11) 
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We can also come at this result via the Laplace transform   L[f(t)] = F(s) = 

= . Taking the Laplace transform of I∫
∞

−

0
)( dtetf st nf(t) yields L[Inf(t)] = F(s)/sn, 

where n is the integer. We assert  

  Iαf(t) = L–1[F(s)/sα],  (3.12) 

where L–1[ ] denotes the inverse Laplace transform, α is the positive real 

value. The Laplace transform of tβ is L[tβ] = Γ(β + 1)/sβ + 1. Accounting for 

equation (3.12) we arrive at the same result given by equation (3.11): 

  Iαtβ = L– 1[Γ(β + 1)/sα + β + 1] = 
)1(

)1(
++Γ

+Γ
βα

β L– 1[Γ(α +β + 1)/s α +β + 1] = 

 = tα + β Γ(β + 1)/ Γ(α + β + 1). (3.13) 

It is convenient to introduce the following causal function Fα(t) which is 

vanishing at t < 0: 

 Fα(t) = tα – 1/Γ(α). (3.14) 

Let us now recall the convolution integral with two function f(t) and g(t), 

which reads 

 f(t) ∗ g(t) = . (3.15) ∫ −
t

dgtf
0

)()( τττ

 Then we note from equations (3.4) and (3.14) that the fractional integral of 

order α can be considered as the convolution between Fα(t) and f(t), i.e. 

 Iαf(t) = Fα(t) ∗ f(t). (3.16) 

Let us prove an important composition rule based on the Beta function 
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 Fα(t) ∗ Fβ(t) = Fα + β(t), (3.17) 

which can be used to prove the semigroup property (3.7) of fractional integral 

operators. We have 

 Fα(t) ∗ Fβ(t) = τ
β

τ
α
τ βα

dtt
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where η = τ /t. 

2.1. Geometric interpretation of fractional integration 

Let us rewrite fractional integral (3.4) in the following form:  

 Iαf(t) = , (3.19) ∫
t

tdgf
0

);()( ττ

 g(τ ; t) = [tα – (t – τ)α]/Γ(α + 1). (3.20) 

Considering the integral (3.20) for a fixed t, then it becomes simply a 

Riemann-Stieltjes integral.  

Now let us take the axes τ, g, and f. In the plane (τ, g) we plot the function 

g(τ; t) for 0 ≤ τ ≤ t. Along the obtained curve we “build a fence” of the varying 

height f(τ), so the top edge of the "fence" is a three-dimensional line (τ, g(τ; t), 

f(τ)), 0 ≤ τ ≤ t. This "fence" can be projected onto two surfaces (see Fig. 2): 
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f(τ) 

g(τ ; t) 
τ 

 
Fig. 2. The “fence” and its shadows: I1f(t) and Iαf(t). 

a) the area of the projection of this "fence" onto the plane (τ, f ) corresponds to 

the value of the integral I1f(t) = ; ∫
t

df
0

)( ττ

b) the area of the projection of the same "fence" onto the plane (g, f) 

corresponds to the value of the integral (3.19), or, what is the same, to the 

value of the fractional integral (3.4). 

Obviously, if α = 1, then g(τ; t) = τ, and both "shadows" are equal. This 

shows that the classical definite integration is a particular case of the fractional 

one. 

3. THE FRACTIONAL DERIVATIVE OF ORDER α 

Let us consider the Abel integral equation of the first kind 

 ∫ =−
Γ

−t tfdtu
0

1 )())((
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1 τττ
α

α , 0 < α < 1, (4.1) 
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where f(t) is a given function. It can be easily recognized that this equation can 

be expressed in terms of a fractional integral, i.e. 

 Iα u(τ ) = f(t) ,  (4.2) 

and consequently solved in terms of a fractional derivative, according to 

 u(t) = Dα f(τ ).  (4.3) 

To this end we need to extend the property (3.5) from the positive integers to 

real values; this means  

 DαIα = E. (3.5a) 

Let us now solve (4.1) using the Laplace transform. Noting from equations 

(3.7) and (3.10) that Iα u(t) = Fα(t) * u(t) ÷ U(s)/s α, we then obtain 

U(s)/ s α  = F(s) ⇒ U(s) = sαF(s), F(s) = L[f(s)].  (4.4) 

Now we can choose two different ways to get the inverse Laplace transform 

from (4.4), according to the standard rules. Writing (4.4) as 

 U(s) = s[F(s)/s1 – α] (4.4a) 

we obtain 

 u(t) = ∫ −−Γ
t d

t
f

dt
d

0 )(
)(

)1(
1 τ

τ
τ

α α . (4.5a) 

On the other hand, writing (4.4) as 

U(s) = [sF(s) – f(0)]/s1 – α + f(0)/ s1 – α, (4.4b) 

we obtain 
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Pitfall 

Equation (4.5b) cannot be obtained from equation (4.5) directly by 

differentiation of the integral involving parameter t according to Leibniz’s 

rule 
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To derive equation (4.5b) from equation (4.5a), first it needs to perform the 

integration of (4.5a) by parts: 
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And only now differentiation of the integral with respect to t according to 

formula (4.6) can be fulfilled yielding equation (4.5b). 

As a result we are arriving at the explicit formula defining the Fractional 

Derivative of order α(S1): 

 Dα f(t) = ∫ −−Γ
t d
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Using equation (4.8) let us find the fractional derivative of order α  from the 

power function tγ: 

 Dαtγ = ∫ −−
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Using the following property of the Gamma function, i. e.  Γ(z + 1) = zΓ(z),  

finally  we arrive at 

 Dαtγ = 
)1(

)1(
αγ

γ
−+Γ
+Γ tγ – α, γ > –1, α > 0, t > 0. (4.11) 

Of course, the properties (4.11) are a natural generalization of those known 

when the order is a positive integer. To show that, let us assume that f(t) is a 

monomial of the form f(t) = tk with k integer. The first derivative is as usual 

Df(t) ≡ df(t)/dt = ktk – 1. Repeating this n time gives more general results 

 Dnf(t) = [k!/(k – n)!]tk – n. (4.12) 

Replacing the integers n, k with the real α , γ  and the factorials with the 

Gamma function, leads us to equation (4.11). 
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Figure 3 illustrates the half derivative (maroon curve) of the function y = t 

(blue curve) together with the first derivative (red curve). 

 

Fig.3. Half derivative (maroon curve) of the function y = t (blue curve) 

together with the first derivative (red curve). 

Note the remarkable fact that the fractional derivative Dαf(t) is not zero for 

the constant function f(t) ≡ 1 if  α ∉ Ν, where  Ν is the set of positive integers. 

In fact, equation (4.11) with γ = 0 teaches us that 

 Dα1 = t–α/Γ(1 – α), α ≥ 0, t > 0. (4.13) 

Dα1 is equal to zero only for α ∈   Ν due to the poles of the Gamma function 

in the points 0, –1, – 2,….  By looking at equation (4.11), we observe that 

 Dαtα – 1 = 0, α > 0, t > 0. (4.14) 

The half-derivative of t is 
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 D1/2t = [Γ(2)/ Γ(3/2)]t1/2 = 2(t/π)1/2. (4.15) 

Repeating this process gives 

 D1/22(t/π)1/2 = 2π –1/2D1/2t1/2 = 2π –1/2 [Γ(3/2)/ Γ(1)]t0 = 1, (4.16) 

which is indeed the expected result of 

 (D1/2D1/2)t = 1. (4.17) 

It is important to keep in mind that in contrast to the semigroup property of 

the operators of fractional integration (IαI β = I βIα = Iα +β), the operators of 

fractional differentiation Dα do not satisfy either the semigroup property, or 

the (weaker) commutative property. To show how the semigroup property 

does not necessarily hold for the standard fractional derivative, two simple 

examples are provided for which 

 DαD βf(t) = D βDα f(t) ≠ Dα + βf(t), (4.18) 

 DαD βg(t) ≠ D βDα g(t) = Dα + βg(t). (4.19) 

In the first example let us take f(t) = t – 1/2 and α = β = 1/2. Then, using 

equation (4.11), we get D1/2f(t) ≡ 0, D1/2D1/2f(t) ≡ 0, but D1/2 + 1/2 f(t) = D1f(t) = 

– t – 3/2/2. In the second one let us take g(t) = t1/2 and α = 1/2, β = 3/2. Then, 

again using equation (4.11) and property of the Gamma function Γ(x)Γ(1 – x) 

= π/sin(πx) allowing to find the value of Γ(–1/2) = – 2π1/2, we obtain      

D1/2g(t) = π1/2/2, D3/2g(t) ≡ 0, but   D1/2D3/2g(t) ≡ 0, D3/2D1/2g(t) = – t –3/2/4 and 

D1/2 + 3/2g(t) = D2g(t) = – t3/2/4. 
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4. APPLICATIONS 

4.1. Eigenfunction 

The eigenfunctions of the fractional derivatives Dα are defined as the 

solutions of the fractional differential equation 

 Dαf(t) = λf(t), (5.1) 

where λ is the eigenvalue.  

The solution of equation (5.1) can be easily found by means of the Laplace 

transform  

 L[f(t)] ≡ F(s) = . (5.2) dtsttf )exp()(
0
∫
∞

−

The Laplace transform of Dαf(t) is simply sαF(s). Applying (5.2) to 

equation (5.1), the solution in the imaginary space reads 

 F(s) = 1/(sα – λ). (5.3) 

Using equation (A11d), the inverse Laplace transform gives the solution of 

equation (5.1): 

 f(t) = tα – 1Eα, α(λtα), (5.4) 

where Eα, β(t) is the generalized Mittag-Leffler function [see (A11b)] for the 

definition). 

4.2. Summation of series 

The series 

 S = t1/2/Γ(3/2) +  t3/2/Γ(5/2) + t5/2/Γ(7/2) + ... (5.5) 
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can be obtained from the following expansion 

 et = 1/Γ(1) +  t/Γ(2) + t2/Γ(3) + ... (5.6) 

by applying the operator I1/2 to the latter. Using result from Table 3, the sum S 

reads 

 S = I1/2et = eterf t1/2, (5.7) 

It should be noted, that applied the fractional integration for the series 

summation is advisable when the coefficients of expansion contain Gamma-

function of a fractional argument. This often occurs in the theory of heat- and 

mass-transfer.  

 4.3. Oscillation of a particle in symmetrical potential well 

As was shown early, the coordinate x of a particle depends on potential 

energy U by the following manner 

 x(U) =  (8πm)1/2I1/2T(E), (5.8) 

where T(E) is the period of oscillation as a function of the particle total energy 

E.   

Taking the fractional derivative D1/2 from equation (5.8) yields  

 T(U) =  (8πm)– 1/2D1/2 x(E). (5.9) 

4.4. Rheological laws 

Rheology is the study of the deformation and flow of matter under the 

influence of an applied stress, which might be, for example, a shear stress or 

extensional stress. The experimental characterization of a material's 
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rheological behavior is known as rheometry, although the term rheology is 

frequently used synonymously with rheometry, particularly by 

experimentalists. Theoretical aspects of rheology are the relation of the 

flow/deformation behavior of material and its internal structure (e.g. the 

orientation and elongation of polymer molecules), and the flow/deformation 

behavior of materials that cannot be described by classical fluid mechanics or 

elasticity. This is also often called non-Newtonian fluid mechanics in the case 

of fluids. Highly elastic strain of polymers can be described by the following 

rheological law 

 y(t) = const IνF(t), 0 < ν  < 1, (5.10) 

where y is the strain, F(t) is the stress.  

 4.5. Heat and mass flux determination 

Let us consider the heat of the semi-infinite area with the initial 

temperature be equal to zero.  The mathematical statement of the problem is as 

follows:  

 02

2
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂
∂

−
∂
∂ T

xt
, 0 < x < ∞, (5.11) 

 T(0, t) = Ts(t), (5.12) 

 T(∞, t ) = 0, (5.13) 

 T(x, 0) = 0. (5.14) 

Factorizing equation (5.11) yields 
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 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

xt 2/1

2/1
02/1

2/1
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂ T

xt
. (5.15) 

Let us consider the equation formed by the right multiplier of the 

differential operator 

 02/1

2/1
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂ T

xt
. (5.16) 

It should be noted here that the solution of the equation formed by the left 

multiplier 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

−
∂
∂

xt 2/1

2/1
T = 0, (5.17) 

does not satisfy the condition given by equation (5.13). To show this, applying 

the Laplace transform to (5.17) results in the ordinary differential equation of 

the first order: 

 dℑ/dx = s1/2ℑ,  (5.18) 

where ℑ(x, s) = L[T(x, t)] is the Laplace transform of T. 

By the separation of variables, the solution of equation (5.18) can be easily 

found: 

 ℑ = const × exp (s1/2x). (5.19) 

As x turns to the infinity, ℑ turns to the infinity as well. 

Coming back to (5.16), let us write this equation at x = 0: 

 s
x

s qT
x

tTDtT
t

=
∂
∂

−==
∂
∂

=0

2/1
2/1

2/1
)(),0( , (5.20) 
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where qs is the heat flux at x = 0. 

Thus, the heat flux has been found without knowing the spatial temperature 

distribution.  Accounting for equations (3.2a) and (4.8), the heat flux at x = 0 

can be written in the explicit form 

 qs = ∫ −

t
s

t
dT

dt
d

0

)(1
τ
ττ

π
. (5.21) 
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APPENDIX I. General properties of semidifferentiation and 

semiintegration 

   A binomial coefficient
)1()(

)()1(
+Γ−Γ

−Γ
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
jq
qj

j
q j , where j is a nonnegative 

integer and q may take any value. 

Table 1. Values of  and their cumulative sums. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
jj

2/1
,

2/1

J ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
J
2/1  ∑

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛J

j j0

2/1  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−
J

2/1  ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−J

j j0

2/1  

0 1 1 1 1 

1 1/2 3/2 – 1/2 1/2 

2 – 1/8 11/8 3/8 7/8 

3 1/16 23/16 – 5/16 9/16 

4 – 5/128 179/128 35/128 107/128 

5 7/256 365/256 – 63/256 151/256 

→ ∞ 
2/3

1

2
)1(
J

J

π

+−  → 2 
J

J

π
)1(−  → 2–1/2
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Table 2. General properties 

f D1/2f I1/2f 

f1 ± f2 D1/2f1 ± D1/2f2 I1/2f1 + I1/2f2

Cf C D1/2f C I1/2f 

f(kt) k1/2 Dkt
1/2f(kt) k–1/2Ikt

1/2f(kt) 

tf(t) tD1/2f + 0.5I1/2f tI1/2f – 0.5I3/2f 

df/dt D3/2f – 0.5t–3/2f(0)/π1/2, f(0) ≠ ∞ f(0)/ π1/2 + D1/2f, f(0) ≠ ∞ 

 

Table 3. Exponential, related function and special functions(S2)

f D1/2f I1/2f 

exp(t) (πt)–1/2 + exp(t)erf (t1/2) exp(t)erf (t1/2) 

exp(–t) (πt)–1/2 – 2π –1/2D(t1/2) 2π –1/2D(t1/2) 

exp(t)erf (t1/2) exp(t) exp(t) – 1 

Daw(t1/2) 0.5π1/2exp(–t) 0.5π1/2[1 – exp(–t)] 

exp(t)erfc (t1/2) (πt)–1/2 – exp(t)erf (t1/2) 1 – exp(t)erf (t1/2) 

exp(t)erfc (– t1/2) (πt)–1/2 + exp(t)erf (– t1/2) exp(t)erf (– t1/2) – 1 
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APPENDIX II. Special functions closely related to the fractional 

differentiation and integration. 

K(x) and E(x) denote the complete elliptic integrals of the first 

(A1) K(x) = ∫
−

2/

0 2sin1

π

θ

θ

x

d  

and second  

(A2) E(x) = θθ
π dx∫ −

2/

0
2sin1  

kinds. 

The incomplete gamma function  

(A3) γ *(ν, z) = e– z∑
∞

= ++Γ0 )1(n

n

n
z

ν . 

If Re z > 0, then γ *(ν, z) has the integral representation 

(A4) γ *(ν, z) = ∫ −−

Γ
z t dtet

z 0
1

)(
1 ν

νν
. 

Useful properties of the incomplete gamma function are its recursion 

(A4a) γ *(ν – 1, z) = zγ *(ν, z) + exp (– z)/Γ(ν), 

and its value 

(A4b) γ *(1/2, z) = erf (z0.5)/z0.5. 

The closely related is the Ez(ν, a) function 

(A5) Ez(ν, a) = zνeazγ *(ν, z). 

The error function is defined as 
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(A5) erf x = ( )∫ −
x dtt

0
2 2/exp2

π
 

and in term of the incomplete gamma function 

(A6) erf x = xγ *(1/2, x2). 

Since erf ∞ = 1, the complementary error function is defined as 

(A7) erfc x = 1 – erf x. 

The Fresnel integrals are 

(A8) S(x) = . ∫
x dtt

0
2 )2/sin(π

(A9) C(x) = . ∫
x dtt

0
2 )2/cos(π

The generalized hypergeometric series pFq is defined as 

(A10) pFq(a1,…, ap, b1,…, bq; z) = ∑
∞

= +Γ⋅⋅⋅+Γ

+Γ⋅⋅⋅+Γ

Γ⋅⋅⋅Γ

Γ⋅⋅⋅Γ

0 1

1

1

1

!)()(
)()(

)()(
)()(

k

k

q

p

p

q

k
z

kbkb
kaka

aa
bb

. 

We adopt the abbreviation symbolism 

(A10a) ∑
∏

∏∞

=

=

=

++Γ

++Γ
=⎥

⎦

⎤
⎢
⎣

⎡

0

1

1

21

21

)1(

)1(

,...,,
,...,,

i
L

l
l

K

k
k

i

L

K

bi

ai
x

bbb
aaa

x  

for what shall term a 
L
K  hypergeometric. Some familiar functions which are 

instances of such hypergeometrics include 

 
x

x
−

=⎥
⎦

⎤
⎢
⎣

⎡
1

1 , 

 =⎥⎦
⎤

⎢⎣
⎡

0
x exp(x), 
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 =⎥⎦
⎤

⎢⎣
⎡

c
x exp(x)γ *(c, x), 

 x1/2 =⎥⎦
⎤

⎢⎣
⎡

2/1
x exp(x)erf (x1/2), 

 0.5π1/2 =⎥⎦
⎤

⎢⎣
⎡−

2/1
x Daw(x1/2), 

where Daw(x) is Dawson’s integral: Daw(x) = exp(– x2) . ∫
x

dtt
0

2 )exp(

The Mittag-Leffler function Eα(x) and generalized Mittag-Leffler function   

Eα, β(x) 

(A11a) Eα(x) = ∑
∞

+Γ0 )1( n
xn

α
, α > 0, 

(A11b) Eα, β(x) = ∑
∞

+Γ0 )( βαn
xn

, α > 0. 

The Laplace transforms of the Mittag-Leffler functions Eα(x) and Eα, β(x) are 

(A11c) L[Eα(– λxα)] = sα/(sα + λ), 

(A11d) L[xβ – 1Eα, β(– λxα)] = sα – β/(sα + λ), 

The Mittag-Leffler function Eα(x) provides a simple generalization of the 

exponential function because of the substitution of n! = Γ(n + 1) with (αn)! = 

Γ(αn + 1). Particular cases of (A11), from which elementary functions are 

recovered, are 

(A12)  E2(+ x2) = cosh x, E2(– x2) = cos x, 

(A13) E1/2(± x1/2) = ex[1 + erf (± x1/2)]. 
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SUPPLEMENT 

S1. These fractional integral and derivative nowadays is known as the 

Riemann- Liouville (R-L) ones. On the other hand, the fractional derivative of 

order α  in the Caputo sense is defined as the operator *Dα such that 

(S1.1) *Dαf(t) := I m – αDmf(t), m – 1 < α ≤ m, 

where m is the positive integer. 

This implies  

(S1.2) *Dαf(t) = 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

<<−
−−Γ ∫ −+

.),(

;1,
)(

)(
)(

1

0
1

)(

mtf
dt
d

mm
t

df
m

m

m

t

m

m

α

α
τ

ττ
α α

 

The R-L derivative for α > 1 reads 

(S1.3) Dαf(t) = 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=

<<−⎥
⎦

⎤
⎢
⎣

⎡

−−Γ ∫ −+

.),(

;1,
)(
)(

)(
1

0
1

mtf
dt
d

mm
t

df
mdt

d

m

m

t

mm

m

α

α
τ

ττ
α α

 

It should be point out that the Caputo fractional derivative satisfies the 

relevant property of being zero when applied to a constant.  

There exists the essential relationship between the two fractional derivatives 

for the same non-integer order 

(S1.4) *Dαf(t) = Dαf(t) – ∑
−

=

−+

+−Γ

1

0

)(

)1(
)0(m

k

kk

k
tf

α

α

, m – 1 < α  <m. 

In particular 
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(S1.5) *Dαf(t) = ∫ −−Γ

t
d

t
f

0

)1(

)(
)(

)1(
1 τ

τ
τ

α α = Dα[f(t) – f(0+)] =  

 = Dαf(t) – f(0+)t – α/Γ(1 – α), 0 < α  < 1. 

In the special case f(k)(0+) = 0 for k = 0, 1, …, m–1, the two fractional 

derivatives coincide. 

S2. Every function which is formed from the elementary functions by 

means of a closed expression*, can be differentiated, and its derivative, if it is 

also a closed expression, formed from the elementary functions. As can be 

seen from Appendix I and II, formally, introducing the operation of the 

fractional differentiation supplements the set of elementary functions with the 

special ones. 

 

 

 

 

 

 

 

*By this we mean a function which can be built up from the elementary 

functions by repeated application of the rational operations and the processes 

of compounding and inversion.  
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