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Abstract.
In dynamic transient analysis, recent comprehensive studies have shown that using mass

penalty together with standard stiffness penalty, the so-called bipenalty technique, preserves the
critical time step in conditionally stable time integration schemes. In this paper, the bipenalty
approach is applied in the explicit contact-impact algorithm based on the pre-discretization
penalty formulation. The attention is focused on the stability of this algorithm. Specifically,
the upper estimation of the stable Courant number on the stiffness and mass penalty is derived
based on the simple dynamic system with two degrees-of-freedom. The results are verified by
means of the dynamic Signorini problem, which is represented by the motion of a bar that comes
into contact with a rigid obstacle.
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1 INTRODUCTION

In contact problems the contact constraints can be enforced either by the Lagrange multiplier
method or by the stiffness penalty method. In practise the latter approach has gained in sub-
stantial popularity, because its implementation is easy, straightforward and has a clear physical
meaning. On the other hand, the choice of the penalty parameter influences the accuracy of the
approximate solution. In addition, in contact-impact applications the stiffness penalty method
tends to decrease the critical time step in conditionally stable time integration schemes. This is
due to the fact that the stiffness-type penalty can greatly enlarge the maximum eigenfrequency
of a system.

In dynamic transient analysis, the penalty method can also be applied to the mass matrix.
This technique is known as the mass penalty or the inertia penalty method. In contrast to the
stiffness penalty approach, it significantly reduces one or more eigenfrequencies. In Reference
[1] the bipenalty technique was introduced, where the both penalty formulations were used si-
multaneously. The goal of this method is to find the optimum of the so-called critical penalty
ratio (CPR) defined as the ratio of stiffness and mass penalty parameters so that the maximum
eigenfrequency and the critical time step are preserved. The calculation of CPR requires an
analysis of the full bipenalised problem. Owing to mathematical difficulty, it limits the classes
of elements that can be taken into account. In order to overcome this problem, a simple relation-
ship between the CPR of an element and its maximum unpenalised eigenfrequency was derived
in [2]. Thus, the multiple constraints and more complex element formulations can be directly
accounted for [3].

In this paper, the bipenalty approach is applied in the explicit contact-impact algorithm based
on the pre-discretization penalty formulation [4]. The attention is focused on the stability prop-
erties of this algorithm. In Section 2.1 the formulation of contact initial/boundary value problem
is presented, followed by the variational formulation in Section 2.2. The idea of the bipenalty
approach for imposing the contact constraints is described in Section 2.3. Finite element dis-
cretization is outlined in Section 2.4. The numerical stability of explicit time integration scheme
is discussed in Section 2.5. Based on the behaviour of the simple dynamic system with two
degrees-of-freedom the upper estimation of the stable Courant number on the stiffness and
mass penalty is derived. In Section 3, the stability of the algorithm is tested on the dynamic
Signorini problem, followed by concluding remarks in Section 4.

2 PROBLEM DESCRIPTION

2.1 Contact initial/boundary value problem

The problem of linear elastodynamics is governed by the balance of linear momentum

∇ · σ(u) + b = ρü(x, t) in Ω× I (1)

where Ω =
⋃
i Ωi, i = 1, 2 is n-dimensional set of spatial points, x ∈ Rn, defining the contact-

ing bodies, I = (0, T ) is the time domain, u is the displacement field, b are the body forces and
σ is the stress field (see Figure 1). The superimposed dots denote the time derivatives. In linear
elasticity the stress can be computed from the linear strain field

ε =
1

2

(
(∇u)T + ∇u

)
(2)

via Hooke’s law
σ = c : ε (3)
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where c is the tensor of elastic constants given as

c = λI⊗ I + 2µI (4)

where I is the second-order identity tensor and λ, µ are the Lamé constants. The problem is in
general subject to certain initial and boundary conditions as well. The initial conditions

u(x, 0) = u0 in Ω̄ (5)
u̇(x, 0) = v0 in Ω̄ (6)

are prescribed in the closure of domain Ω̄. The displacement and traction boundary conditions

u = ū on Γu (7)
σ · n = t̄ on Γσ (8)

are prescribed on the Γu ⊂ Γ and Γσ ⊂ Γ, respectively; Γ denotes the boundary of the domain
Ω; ū and t̄ are the prescribed displacements and the prescribed tractions, respectively; the vector
n stands for the outward normal vector to Γσ. Further, the contact constraints are described on
the contact boundary Γc ⊂ Γ by the Signorini-Hertz-Moreau conditions

gN ≥ 0 tN = σ · n ≤ 0 gNtN = 0 on Γc (9)

also known as the Karush-Kuhn-Tucker (KKT) conditions. Here, the normal gap function gN

has been introduced, which is defined as

gN =

{
(x2 − x̄1) · n̄1 if (x2 − x̄1) · n̄1 < 0

0 otherwise
(10)

The definition is apparent from Figure 1, where x̄1 is the closest point projection of the point x2,
lying on the contact boundary of body Ω2, onto the contact boundary of body Ω1. The vector n̄
denotes the contact normal vector.

gN
x̄1

n̄1x2

Γc

Γc

Γu

ΓuΓσ

Γσ

Ω2
Ω1

Figure 1: Definition of the normal gap function.

The first inequality (9)1 is called the impenetrability condition. The second condition (9)2

asserts the negative traction vector on the contact boundary. And finally, the third equality (9)3

is called the complementarity condition ensuring the complementarity between the gap function
and the contact traction vector.
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2.2 Variational formulation

In order to be able to perform the finite element discretization, it is necessary to reformulate
the strong form of the contact initial/boundary value problem presented in the preceding section
in a weak sense. Hamilton’s principle is a simple and powerful tool that can be utilised to
derive discretized dynamic system of equations. It states that of all admissible time histories of
displacement field the solution is one which minimizes the action functional

u = arg min

(∫ T

0

L (u, u̇) dt

)
subjected to gN ≥ 0 on Γc (11)

where the Lagrangian functional, L(u, u̇), is defined as

L (u, u̇) = T (u̇)− (U (u)−W (u)) (12)

where
T (u̇) =

∫
Ω

1

2
ρu̇ · u̇ dV (13)

U (u) =

∫
Ω

1

2
σ : ε dV (14)

W (u) =

∫
Ω

u · b dV +

∫
Γσ

u · t̄ dS (15)

are the kinetic energy, the strain energy, and the work done by external forces, respectively.

2.3 Bipenalty method

In dynamics, the simultaneous use of the stiffness penalties and inertia/mass penalties, called
the bipenalty method, was originally proposed in [1]. There was defined the penalty ratio as

R =
εs
εm

[
s−2
]

(16)

where εs and εm are the stiffness and mass penalty parameter, respectively. There were also
derived optimum values of the penalty ratios–the so-called critical penalty ratios (CPR)–for
a number of finite elements such that the critical time step of the penalised system remains
unaffected. A new method of calculating the CPR associated with a finite element formulation
was developed in [2]. Recently, this finding was extended to include systems with an arbitrary
set of multipoint constraints [3].

Now, a brief description of the bipenalty method follows. Let us assume that the contact
boundary Γc is known. The standard stiffness penalty method adds an extra term to the strain
energy (14) to enforce the zero gap on the contact boundary

Up (u) =

∫
Ω

1

2
σ : ε dV +

∫
Γc

1

2
εsg

2
N dS (17)

Further, the inertia penalty term can also be added to the kinetic energy (13) to enforce the zero
gap rate on the contact interface

Tp (u̇) =

∫
Ω

1

2
ρu̇ · u̇ dV +

∫
Γc

1

2
εmġ

2
N dS (18)
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Now, a new penalised Lagrangian functional can be defined as

Lp(u, u̇) = Tp(u̇)− (Up(u)−W(u)) (19)

The unknown displacement field can be found as one which renders the penalised action func-
tional stationary

δ

∫ T

0

Lp (u, u̇) dt = 0 (20)

where δ denotes the first variation or the directional derivative in the direction of virtual dis-
placement δu. Using the standard procedures one arrives to the principle of virtual displacement

∫
Ω

ρδu · ü dV +

∫
Ω

δε : σ dV +

∫
Γc

δgN(εmg̈N + εsgN) dS =

∫
Ω

δu ·b dV +

∫
Γσ

δu ·t dS (21)

which serves the base for the finite element discretization. The integrals in Equation (21) rep-
resent the virtual work of the inertia forces, internal forces, contact forces, body forces, and
traction forces, respectively. It is worth noting that the integral of the virtual contact work are
expressed with the aid of the inertia and the stiffness penalty.

2.4 Finite element method

Applying the finite element discretization to the variational formulation (21) introduces the
system of nonlinear ordinary differential equations

Mü + Ku + Rc(u, ü) = R (22)

Here, M is the mass matrix, K is the stiffness matrix, Rc is the contact residual vector, which
is the source of the nonlinearity. Further, R is the time-dependent load vector, and u and ü
contain nodal displacements and accelerations, respectively. The element mass and stiffness
matrices are given by

Me =

∫
Ωe

ρHTH dV Ke =

∫
Ωe

BTCB dV (23)

where C it the elasticity matrix, B is the strain-displacement matrix, and H stores the shape
functions. Note that the integration is carried over the element domain Ωe. Global matrices are
assembled in the usual fashion.

In the case of geometrically linear kinematics, the contact residual vector can be written as

Rc(u, ü) = Mpü + Kpu + fp (24)

where

Mp =

∫
Γc

εmNNT dS Kp =

∫
Γc

εsNNT dS fp =

∫
Γc

εsNg0 dS (25)

Here, Mp is the additional mass matrix due to inertia penalty, Kp is the additional stiffness
matrix due to stiffness penalty, and fp is the part of the contact force due to the initial gap g0.
The matrix N represents an operator from the displacement field u to the gap function gN

gN = NTu + g0 (26)

The particular form of the matrix N follows from the used contact discretization. A compre-
hensive overview can be found in [5].
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2.5 Explicit time integration and numerical stability

We now consider the time integration of the semi-discretized system (22) by the central
difference method (CDM) [7]

(M + Mt
p)
ut+∆t − 2ut + ut−∆t

∆t2
+ (K + Kt

p)ut + f tp −Rt = 0 (27)

Assuming that displacements are known at time t − ∆t and t, one can resolve unknown dis-
placements at time t+ ∆t. Note that the matrices Mt

p and Kt
p are time-dependent because they

are associated with active contact constraints. This fact causes the system to be nonlinear.
It is well known that the CDM for a linear system is conditionally stable. The linear stability

theory establishes the upper bound of the time step as

∆t ≤ 2

ωmax

(28)

where ωmax is the maximum eigenfrequency of the finite element mesh. Indeed, the computa-
tion of even a single eigenvalue of a large systems may be expensive. Therefore, it would be
advantageous to have an estimate on the maximum eigenvalue that is easy to compute. Such an
estimate is provided by the element eigenvalue inequality [7]

ωmax < max
e
ωemax (29)

Note that the element eigenvalue inequality is not limited only to element level submatrices.
The submatrices may be also an assemblage of elements.

Unfortunately, there are no stability theorems for contact-impact problems [7]. In this case
the linear stability theory can be applied carefully. In practise, for example, the stability may
be preserved by checking the energy balance during a nonlinear computation. In Reference [8]
an upper bound for the stiffness penalty was derived. Moreover, it was shown that the stiffness
penalty always decreases the stable time step. In this work, we generalize this estimate for the
bipenalty approach following the Belytschko approach [8].

h

E,A, ρ

εm

εs

u1u2

Figure 2: A simple dynamic system with two degrees-of-freedom.

Let us consider a simple dynamic system, depicted in Figure 2, with two degrees-of-freedom.
The system consists of one 1D constant strain truss element with lumped mass matrix. The
active contact constraint is set in node 1. The aim is to determine the maximum eigenfrequency
of this system to estimate the stable time step in the form (28). To this end, the eigenvalue
problem can be formulated as

EA

h

[
1 + βs −1
−1 1

]
u = ω2ρAh

2

[
1 + βm 0

0 1

]
u (30)
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where the dimensionless mass and stiffness penalty have been introduced as

βm =
2

ρAh
εm βs =

h

EA
εs (31)

The maximum eigenfrequency of the problem (30) is given by

ωmax =
c0

h

√√√√1 +
(1 + βs)

(1 + βm)
+

√
1 +

(1 + βs)2

(1 + βm)2
+

2(1− βs)

(1 + βm)
(32)

The Courant dimensionless number is defined as

Cr =
c0∆t

h
(33)

Substituting (32) into (28) using (33) the upper bound of the stable Courant number for the
bipenalty method is obtained

Cr =
2√√√√1 +

(1 + βs)

(1 + βm)
+

√
1 +

2(1− βs)

(1 + βm)
+

(1 + βs)2

(1 + βm)2

(34)

Now, it is useful to introduce a new dimensionless penalty ratio r as

r =
1

2

βs

βm

=
h2

4c2
0

R (35)
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Figure 3: The dependence of the Courant number Cr on the dimensionless stiffness penalty βs

for selected dimensionless penalty ratios r.

The dependence of the Courant numberCr on the dimensionless stiffness penalty βs is plotted
in Figure 3, where the dimensionless penalty ratio r is employed as the parameter. The curve
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for r →∞ (i.e. βm → 0) corresponds to the standard stiffness penalty method. It illustrates the
main disadvantages of the standard stiffness penalty method: the Courant number Cr rapidly
decrease with increasing dimensionless stiffness penalty βs. On the other hand, the curve for
r = 1 confirms the existence of the CPR, for which the stable time step remains unchanged for
an arbitrary value of the dimensionless stiffness penalty βs. In addition, there are more curves in
Figure 3 for dimensionless penalty ratios r = 2, 4, 8, and 16. For each of them, there are limits
of the Courant number for βs →∞ on the right edge of the picture. It is clear that the bipenalty
method with the penalty ratio equal to the CPR is superior over the standard stiffness penalty
method.

3 NUMERICAL EXAMPLE

In this section, the stability of explicit contact-impact algorithm using bipenalty technique
was studied on the dynamic Signorini problem, which was represented by the motion of a bar
that comes into contact with a rigid obstacle (see Figure 4). The bar of length L = 1 [m] with
the initial velocity v0 = 1 [m · s−1] is situated at distance of g0 = 0 [m] in front of the obstacle.
The area of the bar section A [m2], Young’s modulus E [MPa] and density ρ [kg ·m−3] were
chosen to be unit.

E,A, ρ
v0

g0 L

x

Figure 4: 1D dynamic Signorini problem.

The bar was discretized by a regular finite element mesh containing one hundred 1D con-
stant strain truss elements. For the effective integration of equilibrium equations by the CDM
method the consistent mass matrix was diagonalized by the row sum technique. The maxi-
mum eigenvalue of the mesh was λmax = 4e4 [s−2] and the corresponding eigenfrequency was
ωmax = 200 [s−1].

Let us introduce following dimensionless quantities

t∗ =
c0t

L
x∗ =

x

L
u∗ =

u(0, t)

L
F ∗c =

c0Fc

v0EA
σ∗ =

σA

Fc

(36)

where t∗, x∗, u∗, F ∗c , σ
∗ is the dimensionless time, coordinate, contact displacement, contact

force, stress, respectively. In the following figures, the results for the standard penalty method
(left) and the bipenalty method (right) are plotted.

The dimensionless stiffness penalty βs was chosen to 1.5. In order to verify derived formula
of the stability (34) the Courant number Cr was set to 0.82, which was slightly higher than the
critical value Cr = 0.81649658 for the penalty method. The results are shown in Figure 5a,
where time distributions of the kinetic energy, the potential energy, the total energy, the work
done by contact forces are plotted. It was confirmed that the stability of the CDM was lost
for the penalty method, whereas the solution obtained by the bipenalty method still perfectly
conserved the total energy. When the Courant number Cr was set to 0.5 both methods were
stable (see Figure 6).

Note that the work of contact force Wc is almost zero. In fact, it should be exactly zero
because the displacement of the contact force was restricted by the rigid obstacle. However, in
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Figure 5: Time distribution of the balance of energy for βs = 1.5 and Cr = 0.82.
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Figure 6: Time distribution of the balance of energy for βs = 1.5 and Cr = 0.5.

the penalty-like methods, contact forces perform a spurious work on penetrations. This work
converges to zero as βs tends to infinity. Nevertheless, a finite value of the stiffness penalty
parameter always results in a non-zero work of contact force. One can also notice the presence
of oscillations in the distributions of the potential energy and the work of contact forces, which
result in oscillations in the distributions of the total energy. This phenomenon is primarily
caused by the oscillations in the gap function, which will be discussed further.

Figure 7 shows time distribution of the dimensionless contact displacement for βs = 1.5
and Cr = 0.5. The gap should be equal to zero during the impact, which is indicated by
the exact solution in the Figure 7. It is well known that penalty-like methods allow certain
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Figure 7: Time distribution of the dimensionless contact displacement for βs = 1.5 and Cr =
0.5.
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Figure 8: Time distribution of the dimensionless contact displacement for βs = 3.5 and Cr =
0.5.

penetration of contact interfaces. As a result, the oscillations of kinematic and stress quantities
can occur in impact problems. Figure 7b displays an attenuation of the oscillations for the
bipenalty approach in comparison with the penalty method. However, from a certain value of
the dimensionless stiffness penalty βs it was observed that the amplitude of oscillations were
even higher for the bipenalty method than for the penalty method. An example is shown in
Figure 8, where βs = 3.5 was considered. The reason probably is that the oscillation of the
contact displacement overshot zero value. Thus, the contact constraint was deactivated and the
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contact force disappeared. In consequent iterations, the contact constraint was again activated.
Therefore, the system was switching between two states which generated the oscillations.

This phenomenon can also be observed in Figure 10, where time distribution of the dimen-
sionless contact force is plotted. Both distributions are bounded by zero value. On the other
hand, for the previously chosen value of dimensionless stiffness penalty βs = 1.5 time depen-
dence of of the dimensionless contact force oscillated around the exact solution as indicated
in Figure 9. Similarly to distribution of the contact displacement in Figure 7b the bipenalty
method dumped oscillations in the distribution of contact force depicted in Figure 9b.
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Figure 9: Time distribution of the dimensionless contact force for βs = 1.5 and Cr = 0.5.
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Figure 10: Time distribution of the dimensionless contact force for βs = 3.5 and Cr = 0.5.
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Figure 11 shows spatial distribution stress along the bar when the wavefront reached a half
of the bar. In addition to contact analysis, a reference calculation was performed, where the
axial displacement of the contact node was fixed.
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Figure 11: Spatial distribution of the dimensionless stress for βs = 1.5 and Cr = 0.5.
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Figure 12: Spatial distribution of the dimensionless stress for βs = 3.5 and Cr = 0.5.

Stress distributions for both the penalty and the bipenalty method was in a good agreement
with the reference solution (see Figures 11 and 12). The reason probably is that the finite ele-
ment mesh behaves as a low-pass filter [9] and therefore high frequency oscillations introduced
by the penalty-like methods do not affect the solution.
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4 CONCLUSIONS

In this paper, the stability of explicit contact-impact algorithm [4] using the bipenalty ap-
proach was studied. The upper bound of the stable Courant number on the stiffness penalty and
mass penalty was derived based on the simple dynamic system with two degrees-of-freedom. It
was shown that the critical Courant number tend towards zero for the stiffness penalty approach-
ing infinity whereas the mass penalty was considered to be zero. On the other hand, when the
penalty ratio was set to the critical value CPR, which corresponded to the maximum eigenvalue
of the unpenalised system, the critical Courant number was equal to one for the arbitrary value
of the stiffness penalty.

The derived upper bound of the stability was verified by means of the simple 1D dynamic
Signorini problem. It was demonstrated decreasing the critical time step for the standard penalty
method and its preserving for the bipenalty method. The example also revealed that both meth-
ods caused spurious oscillations in the distributions of displacement and the contact force. This
effect was especially obvious for higher values of stiffness penalty parameters. The estimation
of the penalty parameter ensuring non-oscillated behaviour of both methods will be investigated
in further work.
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