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Introduction
The main difficulty in contact analysis is non-smoothness. It arises from
inequality constraints as well as geometric discontinuities inducted by the
spatial discretization. Contact analysis based on traditional finite elements
utilizes element facets to describe contact surfaces. The facets are C 0

continuous so that the surface normals can experience jump across facet
boundaries leading to artificial oscillations in contact force and pressure.
A remedy to this geometric discontinuity could provide isogeometric
analysis (IGA). The fundamental idea is to accurately describe a physical
domain by proper representation (e.g. NURBS) and then to utilize the
same basis for analysis. This is in contrast with the classical finite element
method where the basis is given in advance by the element type.
Consequently the physical domain could be approximated inaccurately. A
more detailed description can be found in [1].
Isogeometric NURBS-based contact analysis has some additional
advantages:

preserving geometric continuity,

facilitating patch-wise contact search,

supporting a variationally consistent formulation,

and having a uniform data structure for the contact surface and the
underlying volumes.

B-splines

Let Ξi , i = 1, . . . , dp be the open non-uniform knot vector associated with
i th parametric dimension of a patch

Ξi =

ξ i1, . . . , ξ ipi+1︸ ︷︷ ︸
pi+1 equal terms

, ξ ipi+2, . . . , ξ
i
ni, ξ

i
ni+1, . . . , ξ

i
ni+pi+1︸ ︷︷ ︸

pi+1 equal terms

 , i = 1, . . . dp

The B-spline basis functions, Nj ,p(ξ), are defined by Cox-de Boor recursion
formula. For p = 0 it is defined as

Nj ,0(ξ) =

{
1 ξ ∈ [ξj, ξj+1) , j = 1 . . . n

0 otherwise

and for p > 0

Nj ,p(ξ) =
ξ − ξj
ξj+p − ξj

Nj ,p−1(ξ) +
ξj+1+p − ξ
ξj+1+p − ξj+1

Nj+1,p−1(ξ)

NURBS
A pth degree NURBS basis function is defined by

Rp
j (ξ) =

Nj ,p(ξ)wj∑n
ĵ=1 Nĵ ,p(ξ)wĵ

where wj is referred to as the j th weight. Multivariate NURBS objects can
be constructed simply by tensor product of these univariate basis functions.
With NURBS basis functions at hand one can introduce surface
discretization as

x(ξ1, ξ2) =

n1∑
j1=1

n2∑
j2=1

Rp1,p2

j1,j2
(ξ1, ξ2)Pj1,j2

where Pj1,j2 ∈ <ds is the control net, i.e., the array of coordinates of control
points. Adopting the isogeometric concept, an analogous interpolation is
used for the unknown displacement field and its variation.
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Explicit dynamic contact algorithm
An algorithm, originally proposed in [2], was adapted to the isogeometric
analysis and expanded to explicit dynamics. The main idea is as follow.
The contact boundary value problem is formulated in the weak sense

δΠint,ext(u, δu) + δΠc(u, δu) = 0

gN(u) ≥ 0

where δΠc was proposed in the form

δΠc(u, δu) = −
∫

Γc1

εNgNδu dΓ−
∫

Γc2

εNgNδu dΓ

Note that the contact virtual work is integrated over both contact
boundaries Γc1 and Γc2 so that the algorithm preserves symmetry.
Consequently, after FE discretization the action-reaction principle is not
explicitly fulfilled. However, it should be shown that the equilibrium is
recovered during the mesh refinement.
The application of the FEM for spatial discretization and the central
difference method (CDM) for temporal integration yields

MUn+1 = ∆t2 [R + Rc12(Un) + Rc21(Un)− F(Un)] + M(2Un −Un−1)

The stability of the integration process requires time step to be smaller or
equal to 2/ωmax. The consistent element mass matrix rising from the
variational formulation has the form

Me =

∫
Ωe

ρHTH dΩ

The efficient solution of the resulting system of equations requires
diagonalization of the mass matrix. The common techniques are the row
sum method and HRZ method [3].

Dynamic Hertz problem
The numerical example dealt with frictionless impact of the cylinders. The
effect of mass lumping was investigated. The analysis was limited to the
second order elements.
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Conclusions
This paper addressed the utilization of the NURBS based isogeometric
analysis in an explicit contact-impact algorithm. Two main conclusions may
be drawn:

For second order elements and mass matrix lumped by the HRZ method,
IGA in comparison with classic FEA leads to a more oscillatory contact
force and consequently also contact pressure.

The oscillations of the contact forces in IGA are minimal for consistent
mass matrix.
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