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Abstract We present new invariant domain preserving finite volume schemes for the
compressible Euler and Navier—Stokes—Fourier systems. The schemes are entropy
stable and preserve positivity of density and internal energy. More importantly, their
convergence towards a strong solution of the limit system has been proved rigorously
in [9, 11]. We will demonstrate their accuracy and robustness on a series of numerical
experiments.
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1 Introduction

Numerical simulations of compressible flows find their applications in many ev-
eryday problems, ranging from engineering, oceanography, meteorology to hemo-
dynamics. Over the years a large variety of powerful numerical schemes has been
developed. Let us point out a few well-established and practical schemes, e.g.,
[1,5, 6, 12, 16, 18, 19, 23, 25]. Despite of their practical success the rigorous nu-
merical analysis, in particular, in multiple space dimensions, is still open in general.

In [13, 14] the concept of invariant domain preserving schemes for hyperbolic
conservation laws has been introduced. These methods satisfy some important struc-
ture preserving properties, such as positivity of some quantities, entropy production
or the minimum entropy principle. In our recent works [9, 10, 11] we have proposed
new finite volume schemes for the compressible Euler equations of gas dynam-
ics, compressible Navier—Stokes and Navier—Stokes—Fourier equations, respectively.
Our new finite volume methods belong to the class of the invariant domain pre-
serving schemes. Their properties further allowed us to study the convergence of
the schemes rigorously. More precisely, we proved a nonlinear variant of the Lax
equivalence theorem: a consistent numerical scheme is convergent if and only if it is
stable.

Of course, the compressible Euler and Navier—Stokes—Fourier equations are truly
nonlinear, thus we have to overcome difficulties arising due to nonlinear terms. To
this goal, we apply a concept of dissipative measure—valued solutions developed in
[2, 3, 8] for the above mentioned systems, respectively. Indeed, the Young measures
which are the space-time parametrized probability measures replace the linearity
setting. They allow us to pass to the limit in nonlinear terms and show the convergence
of our finite volume schemes. A limit is in general only a measure, more precisely
a dissipative measure—valued solution. We refer a reader to [2, 3, 8] and [9, 10, 11]
for more details on its definition.

A crucial ingredient of our convergence analysis is the fact that we have the weak-
strong uniqueness principle for all systems mentioned above. More precisely, if the
strong solution exists our dissipative measure—valued solution coincides with the
former on its lifespan. Consequently, we get the strong convergence of our numerical
solutions to the strong solution in appropriate Lebesgue spaces. The main aim of
this paper is to illustrate experimentally the behaviour of our new invariant domain
preserving finite volume schemes for compressible fluids, namely for the Euler and
the Navier—Stokes—Fourier systems, cf. [9, 11].

The gas dynamics of inviscid compressible flows is governed by the Euler equa-
tions

0,0 +divim =0,
om +div,(mQu)+V,p =0,
OE +divy((E + p)u) =0, (1)
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where o, p,u, m = pu, and E represent the density, pressure, velocity, momentum
and the total energy of a fluid, respectively. Taking into account the viscous and heat
conducting effects yields the Navier—Stokes—Fourier equations

00 +dive,m =0,
Om +divy(m ® u) + Vip = div,S(D(u)),
0 (pe) +divy(peu) — divy (Vi) = S(D(u)) : Vyu — pdivyu, 2)

where the viscous stress tensor S reads

Vou+ Vol
S(D(w)) = 2uD(u) + Adiveul, D(u) = x‘”%

The systems (1) and (2) are closed by the standard pressure law for a perfect gas
p = p(o,9) = p?, ¥ is the temperature. Denoting further e the specific internal
energy, s the physical entropy, v > 1 the adiabatic coefficient and ¢, = the
specific heat at constant volume we have

1
y-1

Cy
e(o,9) =c,9, s(o,9) =log (ﬁ ) = ! log (ﬁ) .
Y y-1 oY

2
The total energy E = %”’? + oe consists of the kinetic energy and the internal energy.

Both systems (1) and (2) are solved in the time-space cylinder (0, T) xQ, Q c R4,
d =2,3. We assume that these systems are accompanied with appropriate boundary
conditions: either the periodic boundary conditions when the domain Q is identified
with a flat torus, or the no flux boundary conditions,

ulgog-n=0,Vy9-n=0
in the case of the Euler equations (1), or the no—slip boundary conditions,
ulaga =0

for the Navier—Stokes—Fourier system (2). To close the formulation of the problem
we impose the initial conditions

1 2
U(0) = Uy, with o9 > 0and Ey — 3 o]

> 0, 3)
©0

where U = (o, m, E) or U = (o, m, ) for the Euler and the Navier-Stokes—Fourier
equations, respectively.
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2 Finite Volume Schemes

We start by introducing the mesh, space discretization and suitable discrete spaces.

2.1 Mesh and Space Discretization

Primary grid. We suppose the physical space to be a polyhedral domain Q c R,
d = 2,3, that is decomposed into compact elements,

o=k

KeTy

The elements K are sharing either a common face, edge, or vortex.

They can be chosen to be triangular, rectangular, or any combination of them.
The primary mesh 7, is assumed to satisfy the standard regularity assumptions,
cf. [4, 7]. The set of all faces is denoted by X, while the set of faces on the boundary
is denoted by X.;, and the set of interior faces by X;,,; = \Z.;. Note that there is
no boundary if the flow is periodic:

Zexr =0 and X, = 2.

Each face is associated with an outer normal vector n. Let |K|, || be the Lebesgue
measure of an element K and a face o, respectively. We shall suppose

IK| ~ h?, |o| ~ h?! for any K € 7, 0 € X.

The parameter & € (0, 1) is the maximum element size, i.e., the size of the mesh 7},.
For the discretization of the Navier—Stokes—Fourier system (2) we additionally
require the primary grid 7, to satisfy the following property: there is a family of
control points P, = {Xx |xx € K,K € T}, such that the segment [xg,x; ] for
any adjacent elements K and L is perpendicular to their common face o = K N L.
We denote by d, = (Xk,Xy) the Euclidean distance betweens the points xgx and
xz in R4. This requirement is naturally satisfied by any rectangular mesh with P,
being the set of gravity centres of all elements. For a triangular mesh, we can use
the well-centred mesh [24], where P}, is the set of circumcentres of all elements.

Dual grid. For the theoretical analysis of our finite volume scheme for the Navier—
Stokes—Fourier system it is convenient to introduce a dual mesh Dj,. A dual cell D,
associated to a face o0 = KN L is defined as Dy = Dy x U Dy 1, where D g
(D &,1) is a triangle (tetrahedron) built by Xk and the common vertices of K and L,
see Figure 1 for a two-dimensional example.

Discrete function spaces. We denote by QO and W, the set of piecewise constant
functions on the primary grid 7, and the dual grid D, respectively. Moreover,
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Fig. 1 Dual grid

vyn € Qp (resp. vy, € W) means that each component of vj, belongs to Qy, (resp.
W;,). Further, for a piecewise continuous function v, whenever x € o € X;;,;, we
define

out = 1i +6 , in = 1i =5 ,
Vo (x) 61_{101+V(x n) v (x) 61_)I101+v(x n)

ViR (x) 4+ vOU (x)

v(x) = > ;

[v] = v (x) = v (x).

Upwind flux. Given a velocity u;, € Qj, and a function rj, € Qy,, we define for each
face o € X;;,; the upwind flux

Uplri.up] =rlup - n=riuy - nl* +r)" (@, - n)”

N I__
:rhuh~n—§|uh-n|[[rh]],

where

and ' =

[f1* =

f+I1fl " ifuy,-n >0,
2 rov ifu, -n <0.
Furthermore, we define the numerical flux function

Fh(rh,uh) = Up[rh,uh] —/’lﬁ [[rhﬂ, 0 <,B <1.

Discrete operators. For any r,,v;, € Qp and q;, € W), we define the following
discrete gradient and Laplace operators
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Vo : 0, W,
1
Voprp = Z (Vorn)elp,, (Vorp)e =—1[rn]n,
oEX d‘r
Vi :0n = On
o|l_
Vpry = Z (Varn)k 1k, (Varnk = Z %rhn,
KeTy oedK
Ap:Qn > On
| |Th
Aprp = Z (Aprp)xlk,  (Aprp)g = Z %¥,
KeT, oedK T
and discrete divergence operators
dinr : Wh g Qh
. . ) o
diveqp = Z (divrgr)x 1k, (divegp)kx = Z %%-n,
KeTy, oedK
divy, : Qp > Op
. ) ) ol __
divpvy, = Z (divpvp)x 1k, (divpvp)g = Z :Y:Vh - n,
KTy, oEedK

dinp : Qh [ d Qh
o]

. up _ . up . up _
div, (rpvp) = E Igdiv, (rpvp)x,  div, (ravp)k = E _|K|Fh(rh»vh)'
KeT, o€dK

Further, the discrete symmetric gradient operator is given by

1
Dp(vp) = E(thh +VIvy), vih € Q.

Note that the operators Vo and Ay can be extended to vector-valued functions

componentwisely. Let v, = (Vi n,...,Va.n) € Qn. Then we have
Vovy = (VZ)VI,ha e, Vz)vd,h) , Apvy = (Ahvl,h, .. ,Ath,h) R
and
(Vovi)e = i vel®n, (Awvi)k = Z %%

oedK

2.2 Numerical Scheme for the Euler System

We recall a semi-discrete finite volume scheme for the Euler system (1),
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D;op +div,’ (opun) =0,

Dymy, +diVl;lth(mh,uh) +Vupn = R Ay,

a-1

2

DEp +div) Fy[Ep,up] +up - Vipn + prdivauy, = Ap(uj),

l ‘mll |2
2 on
The scheme was firstly introduced and studied in its weak form in our recent work

[9]. Hereafter we will refer to it as the FLM method.

where uj, = %, prn=(y-1) (Eh - ) and D, stands for the time derivative.

Definition 1 (FLM method) Given the initial values (00,4, mo.n, Eo.n) € QnXQn X
On, we seek a piecewise constant approximation (op, mp, Ep) € Qp X Op X Qp,
which solves at any time ¢ € (0, T] the following equations:

/QDszﬁhdx - Z / Fp(onup) [¢n] dSx =0, ¥ ¢p, € Op, (5a)

OE€Zint

/QDtmh‘¢hdx_ Z LFh(mh,uh)'ﬂ¢hﬂde_ Z /(fp_h"'[[(l’hﬂde

T€Zint T€Zint

—h! Z / [un] - [#n]dSx. ¥V ¢ € Qn, (5b)

O€Zint

.Z;DtEh¢hdx_' 22 ./‘F%(Eh’”h)ﬂ¢hﬂdSX" 2; ‘Z;ﬁﬁﬂ¢huhﬂ'"d5x

O€Zint 4 OE€Zint

ha—l
Y /phash [un] - mdSy = ——— /[[ui}] [6n]dS.. ¥ én € Qi
o€l Y9 o YT

(50)

The initial values can be obtained by a standard projection onto the space Oy,
1
y[r]ix = — | rdx forany K € 75,
K| Jk

i.e. (00,1, Mo, Eo,n) = (p[00], Iy [mo], Ik [Eol).

Remark 1 The FLM method (5) can be also rewritten in the following per-cell flux
formulation
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lo|
Dok + Z — Fn(on,up) =0,

oedK |K|
(oa _ _ (oa
Dimg + Z %(Fh(mh,uh)+phn)=h“ 1 Z % uh]],
oedK oedK
o] — _ he! lo| ¢ >
D/Eg + Z Kl FplEn,up] + (ppun +ppuup) -n| = - Z K| [ur] .
oedK oedK

forany K € 7j, .

2.2.1 Properties of the FLM Method

For the rigorous convergence analysis of scheme (5) a few important properties are
inevitable.

Existence of numerical solution.

The discrete problem (5) admits a solution (o (1), my,(t), E;(t)) € QnXQnXQp,
for any + > 0. As shown in [9], the result follows from the standard theory of
ODE:s and sufficiently strong a priori bounds.

Conservation of discrete mass and energy.

In a straightforward way it can be shown that

/Qh(t,’)dx=/go,th=Mo>0,

Q Q
/Eh(t,-)dXZ/E(),thIE0>O,IZO.
Q Q

Positivity of the discrete density, pressure and temperature.

For any fixed #, the approximate density, pressure and consequently also temper-
ature remain strictly positive on any finite time interval. We refer the reader to [9,
Sections 4.3, 4.4] for more details.

Discrete entropy inequality.

The discrete (renormalized) entropy inequality in the sense of Tadmor is satisfied,
cf. [21, 20]. More precisely, it holds that

d
— [ onx(sp)®@pdx 2 Z / Uplonx(sn), un][[Pr]]dSc+
dt T O €Zint g

3 [ (TelonxGantionl] + ¥, GenxGa Lol (1941145

OE€Zint

where y is a non-decreasing, concave, twice continuously differentiable function
on R that is bounded from above. For the derivation and proof see [9, Section 3.2].
Minimum entropy principle

The discrete physical entropy sj, = log (ﬁ;" / Qh) attains its minimum at the initial
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time, cf. [13, 22], i.e.,
sp(t) = s, t >0, where — oo < sg < minsy(0).

The entropy is either constant or produced over time, thus the second law of
thermodynamics holds. See [9, Section 4.2] for more details.

Clearly, the FLM method belongs to the class of invariant domain preserving schemes
introduced in [13, 14]. Based on the above properties the following convergence
results for the FLM method was proved in [9].

Theorem 1 (Convergence of the FLM method)
Let the initial data (00.n, mo.n, Eo.n) satisfy
1 |mop|*

oon20>0, Egp — =
= 2 oo0n

> 0.
Let (o, my, Ep) € Qpn X QO X Qp be the solution of the scheme (5) such that
4
0<,8<1,0<a<§,

and
0<o<on (1), On(1) < O forall t € [0, T] uniformly for h — 0.

Then the family of approximate solutions {0y, my, Ep, }n>0 generates a dissipative
measure—valued (DMV) solution of the complete Euler system (1) in the sense of [2].

Let us point out that a DMV solution of the Euler system is a time-space parametrized
probability measure, i.e. the Young measure. The expected values of density and en-
tropy with respect to this Young measure satisfy the corresponding weak formulation
of mass conservation and entropy inequality, respectively. The weak formulation for
the expected value of the momentum allows a concentration defect that is controlled
by the dissipation in the energy balance. The energy conservation is relaxed and the
expected value of the energy dissipates in time, see [2] and [9].

Furthermore, evoking the DM V-strong uniqueness result proved in [2, Theorem
3.3] we obtain the following strong convergence result.

Theorem 2 (Strong convergence of the FLM method)

In addition to the hypotheses of Theorem 1, suppose that the complete Euler
system (1) admits a Lipschitz—continuous solution (o, m, E) defined on [0, T].
Then

on — o0, m, — m, E;, — E (strongly) in L' ((0,T) x Q).

In Section 3 we will illustrate numerical behaviour of the FLM method on a
series of well-known benchmarks. In what follows we recall the extension of the
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FLM method to the finite volume method for the Navier—Stokes—Fourier system
introduced in [11]. It turned out that for the convergence analysis of the latter system
it is more convenient to work with the temperature formulation instead of the full
energy in the last equation of (2).

2.3 Numerical Scheme for the Navier-Stokes—Fourier System

Having introduced the notation in Section 2.1, we now present a semi-discrete finite
volume approximation of the Navier—Stokes—Fourier system (2),
D;op +divy! (opup) =0,
Dy (onun) +div,”(ontn, up) + Vipn = 2udivy, Dy, (uy) + AV, divyug,
cvDi(onty) + ¢y div,” (onOn, un) — kAR,
= 24 Dy (up)|* + A|diviuy|* = prdiviug.

Note that a fully discrete (implicit in time) version of this scheme was analysed in
our work [11].

Definition 2 (Finite volume method for NSF) Given the initial values (095, %0, 1, J0,1) €
On X On X Qn, we seek a piecewise constant approximation (op,up,9,) €
On X Qpn X Qp which solves at any time ¢ € (0, 7] the following equations:

ADth ¢pdx — Z / F(on,up) [¢n] dSx =0, Yoy € Op, (6a)

o
T E€Lins

/QDt(.Qhuh)'%dx— Z /

o€ ¥

Fp(onupn,up) - [¢n] dSy - / prdiv, @y dx
o

= —Zﬂ/Dh(uh) :Vidp dx —/1/ divpupdivy @y, dx, Vo, € Qn, (6b)
Q Q

v [ Ditest) dnar—c. Y [ Fuontun) [0n1dS—x [ antn o

T€Zint

= / (21 Dy (up) I + A |divieup|* = prdiviug)dn dx, Véu € Op. (60)
Q

Remark 2 Let us point out that the h® !terms in (5b) and (5¢) yield an additional
diffusion and make the FLM method a particular vanishing viscosity approximation
of the Euler system. Since the physical viscosity is naturally included in the Navier—
Stokes—Fourier system, we do not need to include the additional diffusion in (6).
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Remark 3 The numerical scheme (6) can be also rewritten in the usual finite volume
formulation for any K € 7y,

lo|
Dok + Z th(Qh,uh) =0,
o edK

(o J—
D;(ou)k + Z % (Fn(onup, up) +ppn)
oedK

= Z m (Z/JDh(uh) ‘n +/ldivhuhn),

[94] )

cvDi(09)k .

M
=S

o
fr— (Cth(Qhﬁh,uh) — K

= > o (26 IDn @)+ A ldivian i - p (@ivian)k )

2.3.1 Properties of the FV Method for NSF

Analogously as in the inviscid case for the convergence analysis it is fundamental
that our numerical scheme fulfils some invariant domain preserving properties. In
[11] we have proved the following:

¢ Conservation of discrete mass.
One can easily show that

/Qh(t,')dx=/Q0,hdx=Mo>0, t>0.
o Q

¢ Non-negativity of the discrete density.

The approximate density remains non-negative on any finite time interval.
¢ Discrete total energy dissipation.

Let (on,upn, %) € On X Qpn X Qp be a solution to (6). Then

E;(t) <Ep, t >0,

where

Eh([):[2(%Qh(t)|uh([)|2+Cth(t)ﬂh(t) dx.

See [11, Theorem 3.1] for the proof.
* Discrete entropy inequality.
The scheme (6) is entropy stable. It holds that
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1
/Dz (onsp) dx > — / kVopiy - VD(—) dx
Q Q Py

1
+/ — (2,u|D(uh)|2+/l|divhuh|2) dx,
o Un

see [11, Lemma 3.4].

Remark 4 Note that the above properties shown in [11] for a fully discrete implicit
in time version of scheme (6) can be proven in a straightforward manner for the
semi-discrete scheme presented here.

The structure preserving properties listed above, together with the assumptions
on uniform boundedness of the discrete density and temperature, are sufficient to
derive suitable a priori estimates and consistency formulation of scheme (6) which
are inevitable for the convergence of its solutions. We now recall the convergence
results proved in [11].

Theorem 3 (Convergence of the FV method for NSF)

Let the initial data satisfy the assumptions

0<0<00,h<0 0<P <y < 9, llwo.nll2 <u,

for some positive constants o, 0, U, 9, 1. Let (on,n,up) € On X Qp X Qp, be the
solution of the finite volume scheme (6), satisfying the assumptions

0< o< on(t) £2,0 <9 < O(1) < I uniformly for h — 0,and all t € (0,T).

Then the family {op, On, un, Dy (up), Vo, tn=o generates a DMV solution of the
Navier-Stokes—Fourier system (2) in the sense of [3].

Analogously as for the inviscid flows a DMV solution is the Young measure.
Expected values of density, momentum, energy and entropy satisfy appropriate gen-
eralized formulation of (2). Further, applying the DM V-strong uniqueness principle
established in [3, Theorem 6.1] and [11, Theorem 5.5] we have the following strong
convergence result.

Theorem 4 (Strong convergence of the FV method for NSF)

In addition to the hypotheses of Theorem 3 assume that {V; x}(:,x)e0,1)xQ IS @
DMV solution of the Navier—Stokes—Fourier system (2) in the sense of [3] such that

Vi x {0 <0<0<0,0<9, |ul< ﬁ} — 1 foraa (t,x) € (0,T)xQ  (7)
for some constants o, 0, 5, and u. Let, moreover,

(VO,x = 590()()’190()(),“0()() for aa. x € Q,

where (09, %o, ug) belongs to the regularity class
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3,2 . 3.2/0. p3
00, %0 € W>5(Q), 00, F9 >0 in Q, ug € Wy (Q; R°). (®)

Finally, suppose that the Navier-Stokes—Fourier system (2) is endowed with the
initial data (09, 0o, ug) satisfying (8). Let (on, 9y, up) be the solution of the finite
volume scheme (6), and in addition,

lup(t)| < u uniformly for h — 0 and all t € (0,T).
Then

on — o (strongly) in LP ((0,T) x Q),
P — & (strongly) in LP ((0,T) x Q) ,

up — u (strongly) in LP ((0, T)x Q;Rd) , p €[l,o00),

where (0,9, u) is a strong (classical) solution of the Navier—Stokes—Fourier system.

3 Numerical Experiments

In this section we demonstrate the performance of both finite volume methods, the
FLM method (5) for the Euler equations, and the finite volume method (6) for the
Navier—Stokes—Fourier equations.

For time discretization we use the forward finite differences which yield
the explicit finite volume scheme for the Euler system. Diffusive fluxes in the
Navier—Stokes—Fourier equations are approximated by the backward finite differ-
ences and thus implicitly in time. For stability reasons, we set the time step as
6t = min{d1t,, 6t } in each sub-iteration. The first term arises from the CFL stability
condition: 67, = CFL h/max{|u| + ¢}, ¢ = V9. In our numerical simulations we
set CFL = 0.5 if not explicitly claimed otherwise. The second term is due to the
parabolic regularization: 61, = h'™8/(2d).

3.1 Numerical Experiments for the FLM Method

3.1.1 Experimental Order of Convergence (EOC)

We aim to validate the theoretical result on the convergence of o, m, E presented in
Theorem 2 by computing the corresponding norms of numerical errors

Hf = Jrer ”L}L'x

., fefom E},
| frerllpre

lesll =
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where LIL! is a shortening for L'(0,T;L'(Q)) = L!((0,T) x Q). Analogous
notation is used for other Bochner spaces below. Additionally, we also provide the
numerical errors of the velocity u in L?L2—norm and pressure p in L°LL—norm.
The reference solution is the exact solution to (1)

Oref =2+c0S(27X), Urey =

sin(7t) 1
2 + cos(2nx) (—1 ) ’

Pref = (2 +cos(27x)) (2 + sin(27x)), x € [0,1].

€))

Setting ¥y = 1.4, @« = 1.3, 8 = 0.2 and CFL = 0.6, we observe the first order
convergence rate for the FLM method, see Table 1.

Table 1 Relative errors and EOC for the FLM method (5) at time ¢ = 0.1.
h  |legll EOC |lem|l EOC [lee|l EOC |lex|| EOC |lep|| EOC

1/32 9.00e-03 1.13 4.15e-02 1.10 1.21e-02 1.13 5.75e-02 1.06 1.94e-02 1.12
1/64 4.05e-03 1.15 1.88e-02 1.14 5.40e-03 1.16 2.65e-02 1.12 8.74e-03 1.15
1/128 1.81e-03 1.16 8.36e-03 1.17 2.41e-03 1.16 1.20e-02 1.14 3.94e-03 1.15
1/256 8.07e-04 1.17 3.71e-03 1.17 1.08e-03 1.16 5.41e-03 1.15 1.78e-03 1.15

3.1.2 1D Benchmark Problems

We test one-dimensional Riemann problems studied in [15, 23] with the initial data

(or,ur,pr) if0<x <xp,
(o,u,p) = .
(or,ugr,pr) ifx,; <x<1,

and details presented in Table 2.

Table 2 Initial data of 1D tests.

Test|jor ur.  pr  ©OrR UrR PR Tmax Xm

1 |1.0-20 04 1020 04 0.15 0.5
2 (1.0 0.0 1000.0 1.0 0.0 0.01 0.012 0.5
311400 10 100.0 1.0 2.0 05
4 114 0.1 1.0 1.00.1 1.0 20 0.5

Test 1 has a weak solution consisting of two rarefaction waves and it is typically used
for checking the positivity of density; Test 2 is designed for strong shock; Test 3 and
4 are designed to capture stationary contact waves. We set y = 1.4, 8 = 0.2 and
aim to show the numerical performance of the scheme (5) on the domain Q = [0, 1]
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with mesh size 7 = 1/400. First, we present in Figure 2 the results of numerical
simulations for different choices of @, that is the parameter appearing in the artificial
diffusion terms in equations (5b) and (5c). Secondly, we show in Figure 3 the
comparison of the numerical solutions obtained by the FLM method with that of the
HLL finite volume method [23].

0.4 —~ [‘
0.3 -\ |

\ — Exact
0.2 —a=15
—a=138
0l a=20
¢ a=30
0
1 [} 0.2 04 0.6 0.8 1
X X X
6 0 /.*] 1000
15 /
4
10 —Exuct 500 —Exact
5 a=15 —a=15
5 —a=18 ——n=18
i | 1 P— =20 a=20
e a=30 a=30
0 0- L 0 L ’
] 0.2 0.4 0.6 0.8 ] 0.2 0.4 0.6 0.8 ] 0.2 04 0.6 0.8
X X X
1.4 2
L or (]
a=135 a=135
1.2 a=18 =0.1 | —Exact 1 =-—a=18
a=10 — =15 a=10
. a=30 02 ----<.=!.x 05 a=30
a=2
o=3
1 -t 0.3 1]
0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1 L 0.2 04 0.6 0.8 1
X X X
1.4 2
02
1.3 1.3 — Exact
a=15
1.2 1 a=18
a=20
L1 0.5 a=30
1 J 0
0 02 04 06 08 0 02 04 06 08 0 02 04 06 08 1
X x x

Fig. 2 1D tests: from top to bottom are Tests 1 to 4, from left to right solutions of o, u, p.
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0.4
03
02
0.1
0
X X X
) 1000
—Exact
0 =
i 500
10
0 =
0 S
-10
0 02 04 06 08 04 06 08 1
X X
o z10* 100000004
—Exact
HLL
LI0000003 __ 23
05
100000002
A —E
St 100000001
-5 / 1
0 02 04 06 08 0 035
X X
e 01 1
1.3 Y
"l 0099995 0999995
1.2
= Y 0.09999  —Exact 099999
’ HLL HLL
S -- FLM \ -~ FLM
1 = 0.099985 " (LS99985
0 02 04 06 08 0 05 I 0 05
4 X

X

Fig. 3 1D tests: from top to bottom are Tests 1 to 4, from left to right solutions of o, u, p.
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3.1.3 2D Benchmark Problems

Now we test the two-dimensional Riemann problems studied in [15, 16, 17] with Q =
[-1, 1]%. Boundary values are obtained by extrapolation of conservative variables
(0,m,E).

Test 1: circular two-dimensional Sod problem with the initial data

(1.0,0,0,1.0), |x| < 0.4,

b u b u b =
(.1, 12, p) {UQQQQD,dw

Figure 4 displays the contour lines of the numerical solution of density, velocity
components, and pressure at time ¢ = 0.2 which are in a very good agreement with
the results presented in literature, cf., e.g., [23].

05 0 05 05 0 05
() up @p

Fig. 4 Test 1: Sod problem solution on rectangular mesh h, = h, = 0.05 with @ = 1.5, 8 = 0.2
attime ¢ = 0.2.

Test 2: two-dimensional benchmark Riemann problem consisting of two moving
shocks and two standing slip lines. The initial values are set as
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(0.5313,0,0.7276,0.4),
( ) ](10.07276.0.1.0).
’u ’u’ =
@M1 122 PI=1 (08,0,0,1.0),

(1.0,0,0.7276, 1.0),

M. Lukacova-Medvidovd, Hana Mizerovd, and Bangwei She

x>0,y>0,
x<0,y>0,
x <0,y <0,
x>0,y <0.

Figure 5 shows the numerical solution for density and pressure for different CFL
numbers. Numerical solutions obtained by the FLM method are in good agreement

with the results presented in literature, see, e.g., [16].

-0.5 0 0.5
(a) CFL = 0.6

0.5 0.5
0 0
-0.5 -0.5
-0.5 0 0.5
(¢c)CFL =0.6

-05 0

-0.5 0

0.5
(b) CFL = 0.3

0.5
(d) CFL = 0.3

Fig. 5 Test 2: solution of o (upper row) and p (lower row) on rectangular mesh h, = hy = 0.05

with @ = 1.5, 8 = 0.5 at time ¢ = 0.52.

Test 3: two-dimensional Riemann problem with the initial condition

(1.1,0,0,1.1),

(0.5065,0,0.8939,0.35),
(o,u1,u2,p) =

(1.1,0.8939,0.8939, 1.1),

(0.5065,0,0.8939,0.35),

x>0,y>0,
x<0,y>0,
x<0,y<0,
x>0,y <0.



New Invariant Domain Preserving Finite Volume Schemes for Compressible Flows 19

In this configuration there are two forward moving shocks and two backward moving
shocks. Figure 6 depicts the contour lines of the numerical solution of density,
velocity components, and pressure at time ¢ = 0.25. We can again confirm that the
numerical solution is in good agreement with the results presented in the literature,
cf., e.g., [16].

0.5
0
-0.5
-0.5 0 0.5
(b) 1y

0.5
0
-0.5
-0.5 0 0.5 -05 O 0.5
(©) uy @p

Fig. 6 Test 3: solution of o, u;, us, and p on rectangular mesh i = hy, = 0.05 at time ¢ = 0.25.

3.2 Numerical Experiments for the FV Method for NSF

3.2.1 Experimental Order of Convergence (EOC)

Our aim in this section is to validate theoretical results on the convergence of o, u, ¢
presented in Theorem 4 by computing the numerical errors
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”f - fref ||quch]

s e{o,u,9}, g=1,2.
Vrerlig 7 Stom b

llesll =

Here the reference solution is the same as in (9). Thus, we have a manufactured exact
solution with a suitable external force in the momentum and energy equation. Setting
u=21=«k=1and CFL = 8 = 0.6, we observe the first order convergence rate for
the scheme (6), see Table 3. We can observe first order convergence on rectangular
as well as triangular mesh.

Table 3 Relative errors and EOC for the FV method (6) for NSF at time ¢ = 0.2.

h  leo] EOC llexll EOC llesll EOC |leo| EOC llexll EOC [lesll EOC

L'((0,T) x Q)-norm L*((0,T) x Q)-norm

rectangular mesh

32 2.09-02 - 224e-02 - 1.27e-02 - 252e-02 - 271e-02 - 1.49-02 -
64 9.51e-03 1.14 1.06e-02 1.08 5.78e-03 1.13 1.15e-02 1.12 1.31e-02 1.05 6.84e-03 1.12
128 4.27e-03 1.16 4.87e-03 1.12 2.60e-03 1.15 5.21e-03 1.15 6.10e-03 1.10 3.09e-03 1.15
256 1.90e-03 1.16 2.21e-03 1.14 1.16e-03 1.16 2.34e-03 1.16 2.80e-03 1.12 1.38e-03 1.16
512 8.49e-04 1.17 9.98e-04 1.15 5.20e-04 1.16 1.05e-03 1.16 1.27e-03 1.14 6.19¢-04 1.16

triangular mesh

1/32 9.17e-03 - 1.23e-02 - 4.90e-03 - 1.10e-02 - 1.60e-02 - 5.82e-03 -
1/64 4.02e-03 1.19 6.68e-03 0.89 2.43e-03 1.01 4.83e-03 1.18 8.79¢-03 0.87 2.92e-03 0.99
1/128 1.78e-03 1.18 4.10e-03 0.70 1.20e-03 1.02 2.13e-03 1.18 5.44e-03 0.69 1.45e-03 1.01
1/256 7.92e-04 1.17 2.99e-03 0.46 5.87e-04 1.03 9.50e-04 1.17 3.94e-03 0.46 7.19e-04 1.01
1/512 3.56e-04 1.15 2.53e-03 0.24 2.8%e-04 1.02 4.27e-04 1.15 3.31e-03 0.25 3.57e-04 1.01

3.2.2 2D Benchmark Problems

Test 4: Circular shock problem.

We again test the two-dimensional Sod problem using the same initial data as in
the first experiment of Section 3.1.3 with g = 4 = « = 0.001 and CFL = 8 = 0.6.
The contour lines of the numerical solutions are shown in Figure 7. Small viscosity
effects can be noticed but overall the numerical solutions for inviscid and viscous
case are similar as expected.

Test 5: Gresho Vortex problem with the initial data [15]
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(57, 5+ 12.5r2) r<20.2,
(u,p)(r) =4(2-5r, 9—41In0.2+12.5¢> =20r +4Inr) 02 <r <04,
(0, 3+41n2) r>0.4.

Figure 8 displays the contour lines of the numerical solutions obtained by the scheme
(6) with the parameters u = 1 = k = 0.01, and CFL = 8 = 0.6 at time 7 = 0.2.

(@ o (®) uy

©) uz d) 9

Fig. 7 Test 4: Circular shock solution on rectangular mesh hy = hy = 0.05 at time ¢ = 0.2.

Conclusion

We have presented behaviour and performance of two new convergent finite volume
methods for compressible fluids, both inviscid and viscous. These new finite volume
methods satisfy some important invariant domain preserving properties, such as the
minimum entropy principle, mass and energy conservation, positivity preservation,
total energy dissipation and entropy production. These are crucial for showing the
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(@ o (b) uy

() uy (@) &

Fig. 8 Test 5: Gresho vortex solution on rectangular mesh sy = h, = 0.05 at time ¢ = 0.2.

stability and consistency of the schemes. In the framework of a nonlinear version of
the Lax-equivalence theorem, see [9, 11], these properties directly imply the strong
convergence of numerical solutions to a strong solution on its lifespan. Our numerical
experiments presented in Section 3 confirm these theoretical convergence results.
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