Photosynthetica, 2018 (vol. 56), issue 1

Photosynthetica 2018, 56(1):334-341 | DOI: 10.1007/s11099-018-0789-5

Factors affecting photobiological hydrogen production in five filamentous cyanobacteria from Thailand

P. Yodsang1,2, W. Raksajit3, E-M. Aro4, P. Mäenpää4, A. Incharoensakdi1,*
1 Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
2 King Mongkut's University of Technology Thonburi (Ratchaburi Campus), Ratchaburi, Thailand
3 Program of Animal Health Technology, Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
4 Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland

We report here the screening of sixteen cyanobacterial and three green algal strains from Thailand for their potential biohydrogen production. Five filamentous cyanobacterial species, namely Calothrix elenkinii, Fischerella muscicola, Nostoc calcicola, Scytonema bohneri, and Tolypothrix distorta, all possessing nitrogenase activity, showed potentially high biohydrogen production. These five strains showed higher hydrogen production in the absence than in the presence of nitrogen. In particular, F. muscicola had a 17-fold increased hydrogen production under combined nitrogen and sulfur deprived conditions. Among various sugars as a carbon source, glucose at 0.1% (w/v) gave the maximal hydrogen production of 10.9 μmol(H2) mg-1(Chl) h-1 in T. distorta grown in BG11 medium without nitrate. Increasing light intensity up to 250 μmol(photon) m-2 s-1 increased hydrogen production in F. muscicola and T. distorta. Overall results indicate that both F. muscicola and T. distorta have a high potential for hydrogen production amenable for further improvement by using molecular genetics technique.

Keywords: culturing parameters; heterocyst; N2-fixing condition

Received: May 3, 2017; Accepted: January 3, 2018; Published: March 1, 2018Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Yodsang, P., Raksajit, W., Aro, E., Mäenpää, P., & Incharoensakdi, A. (2018). Factors affecting photobiological hydrogen production in five filamentous cyanobacteria from Thailand. Photosynthetica56(1), 334-341. doi: 10.1007/s11099-018-0789-5.
Download citation

References

  1. Allahverdiyeva Y., Leino H., Saari L. et al.: Screening for biohydrogen production by cyanobacteria isolated from the Baltic Sea and Finnish lakes.-Int. J. Hydrogen Energ. 35: 1117-1127, 2010. Go to original source...
  2. Antal T.K., Lindblad P.: Production of H2 by sulphur-deprived cells of the unicellular cyanobacteria Gloeocapsa alpicola and Synechocystis sp. PCC 6803 during dark incubation with methane at various extracellular pH.-J. Appl. Microbiol. 98: 114-120, 2005. Go to original source...
  3. Aoyama K., Uemura I., Miyake J. et al.: Fermentative metabolism to produce hydrogen gas and organic compounds in a cyanobacterium, Spirulina platensis.-J. Ferment. Bioeng. 83: 17-20, 1997. Go to original source...
  4. Baebprasert W., Lindblad P., Incharoensakdi A.: Response of H2 production and Hox-hydrogenase activity to external factors in the unicellular cyanobacterium Synechocystis sp. strain PCC6803.-Int. J. Hydrogen Energ. 35: 6611-6616, 2010. Go to original source...
  5. Berberoǧlu H., Jay J., Pilon L.: Effect of nutrient media on photobiological hydrogen production by Anabaena variabilis ATCC29413.-Int. J. Hydrogen Energ. 33: 1172-1184, 2008.
  6. Bothe H., Schmitz O., Yates M.G. et al.: Nitrogen fixation and hydrogen metabolism in cyanobacteria.-Microbiol. Mol. Biol. Rev. 74: 529-551, 2010. Go to original source...
  7. Chen P.C., Fan S.H., Chiang C.L. et al.: Effect of growth conditions on the hydrogen production with cyanobacterium Anabaena sp. strain CH3.-Int. J. Hydrogen Energ. 33: 1460-1464, 20 Go to original source...
  8. Dutta D., De D., Chaudhuri S., Bhattacharya S.K.: Hydrogen production by cyanobacteria.-Microb. Cell Fact. 4: 36, 2005 Go to original source...
  9. Fay P.: Oxygen relations of nitrogen fixation in cyanobacteria.-Microbiol. Rev. 56: 340-373, 1992. Go to original source...
  10. Fouchard S., Hemschemeier A., Caruana A. et al.: Autotrophic and mixotrophic hydrogen photoproduction in sulfur-deprived Chlamydomonas cells.-Appl. Environ. Microbiol. 71: 6199-6205, 2005. Go to original source...
  11. Gutekunst K., Chen Xi, Schreiber K. et al.: The bidirectional NiFe-hydrogenase in Synechocystis sp. PCC 6803 is reduced by flavodoxin and ferredoxin and is essential under mixotropic nitrate-limiting conditions-J. Biol. Chem. 289: 1930-1937, 2014.
  12. Hansel A., Lindblad P.: Towards optimization of cyanobacteria as biotechnologically relevant producers of molecular hydrogen, a clean and renewable energy source.-Appl. Microbiol. Biot. 50: 153-160, 1998. Go to original source...
  13. Khetkorn W., Lindblad P., Incharoensakdi A.: Enhanced biohydrogen production by the N2-fixing cyanobacterium Anabaena siamensis strain TISTR 8012.-Int. J. Hydrogen Energ. 35: 12767-12776, 2010. Go to original source...
  14. Khetkorn W., Lindblad P., Incharoensakdi A.: Inactivation of uptake hydrogenase leads to enhanced and sustained hydrogen production with high nitrogenase activity under high light exposure in the cyanobacterium Anabaena siamensis TISTR 8012.-J. Biol. Eng. 6: 19, 2012. Go to original source...
  15. Khetkorn W., Rastogi R.P., Incharoensakdi A. et al.: Microalgal hydrogen production-a review.-Bioresour. Technol. 243: 1194-1206, 2017. Go to original source...
  16. MacKinney G.: Absorption of light by chlorophyll solutions.-J. Biol.Chem. 140: 315-322, 1941.
  17. Maneeruttanarungroj C., Lindblad P., Incharoensakdi A.: A newly isolated green alga, Tetraspora sp. CU2551, from Thailand with efficient hydrogen production.-Int. J. Hydrogen Energ. 35: 13193-13199, 2010. Go to original source...
  18. Masukawa H., Nakamura K., Mochimaru M. et al.: Photobiological hydrogen production and nitrogenase activity in some heterocystous cyanobacteria.-Biohydrogen 2: 63-66, 2001. Go to original source...
  19. Masukawa H., Mochimaru M, Sakurai H.: Disruption of the uptake hydrogenase gene, but not of the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen-fixing cyanobacterium Anabaena sp. 7120.-Appl. Microbiol. Biot. 58: 618-624, 2002. Go to original source...
  20. Melis A., Zhang L.P., Forestier M. et al.: Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii.-Plant Physiol. 122: 127-136, 20
  21. Møller K.T., Jensen T.R., Akiba E. et al.: Hydrogen-A sustainable energy carrier.-Prog. Nat. Sci. 27: 34-40, 2017. Go to original source...
  22. Park J.I., Lee J., Sim S.J. et al.: Production of hydrogen from marine macro-algae biomass using anaerobic sewage sludge microflora.-Biotechnol. Bioproc. E. 14: 307-315, 2009. Go to original source...
  23. Patel S., Madamwar D.: Photohydrogen production from a coupled system of Halobacterium halobium and Phormidium valderianum.-Int. J. Hydrogen Energ. 19: 733-738, 1994. Go to original source...
  24. Raksajit W., Satchasataporn K., Lehto K. et al: A. Enhancement of hydrogen production by the filamentous non-heterocystous cyanobacterium Arthrospira sp. PCC 8005.-Int. J. Hydrogen Energ. 37: 18791-18797, 2012. Go to original source...
  25. Reddy P.M., Spiller H., Albrecht S.L. et al.: Photodissimilation of fructose to H2 and CO2 by a dinitrogen fixing cyanobacterium, Anabaena variabilis.-Appl. Environ. Microb. 62: 1220-1226, 1996. Go to original source...
  26. Stanier R.Y., Kunisawa R., Mandel M. et al.: Purification and properties of unicellular blue-green algae (order Chroococcales).-Bacteriol. Rev. 35: 171-205, 1971. Go to original source...
  27. Tamagnini P., Axelsson R., Lindberg P. et al.: Hydrogenase and hydrogen metabolism of cyanobacteria.-Microbiol. Mol. Biol. Rev. 66: 1-20, 2002. Go to original source...
  28. Tamagnini P., Leitão E., Oliveira P. et al.: Cyanobacterial hydrogenase: diversity, regulation and applications.-FEMS Microbiol. Rev. 31: 692-720, 2007. Go to original source...
  29. Tsygankov A.A., Kosourov S.N., Tolstygina I.V. et al.: Hydrogen production by sulfur-deprived Chlamydomonas reinhardtii under photoautotrophic conditions.-Int. J. Hydrogen Energ. 31: 1574-1584, 2006. Go to original source...
  30. Yeager C.M., Milliken C.E., Bagwell C.E. et al.: Evaluation of experimental conditions that influence hydrogen production among heterocystous cyanobacteria.-Int. J. Hydrogen Energ. 36: 7487-7499, 2011. Go to original source...
  31. Yoshino F., Ikeda H., Masukawa H. et al.: High photobiological hydrogen production activity of a Nostoc sp. PCC 7422 uptake hydrogenase-deficient mutant with high nitrogenase activity.-J. Mar. Biotechnol. 9: 101-112, 2007. Go to original source...