Photosynthetica, 2019 (vol. 57), issue 4

Photosynthetica 2019, 57(4):950-959 | DOI: 10.32615/ps.2019.102

Chlorophyll fluorescence for prediction of yellow lupin (Lupinus luteus L.) and pea (Pisum sativum L.) susceptibility to drought

K. JUZOŃ, I. CZYCZYŁO-MYSZA, A. OSTROWSKA, I. MARCIŃSKA, E. SKRZYPEK
The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland

Drought has become an essential environmental factor limiting plant productivity. In order to detect differences in chlorophyll (Chl) a fluorescence, Chl concentration (in SPAD units), and yield parameters of yellow lupin ('Morocco 4' and 'Taper') and pea ('Wenus' and 'SZD165'), drought stress was initiated by withholding water for 14 d (25% of field water capacity). A significant decrease of leaf relative water content was found in tested cultivars. SPAD values did not show significant changes in all cultivars. The maximum photochemical efficiency and area over the Chl a fluorescence induction curve decreased in both species under drought. Performance index in lupin did not change significantly under drought while it declined in pea. Among the tested cultivars, lupin cv. 'Morocco 4' maintained the highest efficiency of the photosynthetic apparatus as well as the highest number of pods, seeds per plant, height, and dry mass of shoots under drought conditions.

Keywords: 1,000-seed mass; deficit irrigation; electron transport; legume; water stress.

Received: October 11, 2018; Accepted: June 24, 2019; Prepublished online: August 9, 2019; Published: November 1, 2019Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
JUZOŃ, K., CZYCZYŁO-MYSZA, I., OSTROWSKA, A., MARCIŃSKA, I., & SKRZYPEK, E. (2019). Chlorophyll fluorescence for prediction of yellow lupin (Lupinus luteus L.) and pea (Pisum sativum L.) susceptibility to drought. Photosynthetica57(4), 950-959. doi: 10.32615/ps.2019.102.
Download citation

References

  1. Anjum S.A., Xie X., Wang L. et al.: Morphological, physiological and biochemical responses of plants to drought stress. - Afr. J. Agr. Res. 6: 2026-2032, 2011.
  2. Antonkiewicz J., Rapacz M.: [Assessment of photosynthetic activity of plants grown on stubble sediments and furnace ash.] - Zesz. Probl. Post. Nauk Rol. 509: 187-196, 2006. [In Polish]
  3. Ashraf M., Harris P.J.C.: Photosynthesis under stressful environ-ments: An overview. - Photosynthetica 51: 163-190, 2013. Go to original source...
  4. Ashraf M., Karim F.: Screening of some cultivars/lines of black gram (Vigna mungo (L.) Hepper) for resistance to water stress. - Trop. Agr. 68: 57-62, 1991.
  5. Baker N.R.: Chlorophyll fluorescence: A probe of photosynthesis in vivo. - Annu. Rev. Plant Biol. 59: 89-113, 2008. Go to original source...
  6. Barrs H.D., Weatherley P.E.: A re-examination of the relative turgidity technique for estimating water deficits in leaves. - Aust. J. Biol. Sci. 15: 413-428, 1962. Go to original source...
  7. Basu S., Ramegowda V., Kumar A., Pereira A.: Plant adaptation to drought stress. - F1000Res. 5: 1554, 2016. Go to original source...
  8. Batra N.G., Sharma V., Kumari N.: Drought-induced changes in chlorophyll fluorescence, photosynthetic pigments, and thylakoid membrane proteins of Vigna radiata. - J. Plant Interact. 9: 712-721, 2014. Go to original source...
  9. Bieniaszewski T., Podleśny J., Olszewski J. et al.: [The response of indeterminate and determinate yellow lupin varieties to different plant density.] - Frag. Agron. 29: 7-20, 2012. [In Polish]
  10. Björkman O., Demmig B.: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. - Planta 170: 489-504, 1987. Go to original source...
  11. Cassol D., De Silva F.S.P., Falqueto A.R., Bacarin M.A.: An evaluation of non-destructive methods to estimate total chlorophyll content. - Photosynthetica 46: 634-636, 2008. Go to original source...
  12. Chaves M.M., Flexas J., Pinheiro C.: Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. - Ann. Bot.-London 103: 551-560, 2009. Go to original source...
  13. Çiçek N., Arslan Ö., Çulha-Erdal Ş. et al.: Are the photosynthetic performance indexes and the drought factor index satisfactory selection criterion for stress? - Fresen. Environ. Bull. 24: 4190-4198, 2015.
  14. Czyczyło-Mysza I., Tyrka M., Marcińska I. et al.: Quantitative trait loci for leaf chlorophyll fluorescence parameters, chlorophyll and carotenoid contents in relation to biomass and yield in bread wheat and their chromosome deletion bin. -Mol. Breeding 32: 189-210, 2013. Go to original source...
  15. Dahl W.J., Foster L.M., Tyler R.T.: Review of the health benefits of peas (Pisum sativum L.). - Brit. J. Nutr. 108: 3-10, 2012. Go to original source...
  16. Daryanto S., Wang L., Jacinthe P.A.: Global synthesis of drought effects on food legume production. - PLoS ONE 10: e0127401, 2015. Go to original source...
  17. Estill K., Delaney R.H., Smith W.K., Ditterline R.L.: Water relations and productivity of alfalfa leaf chlorophyll variants. -Crop Sci. 31: 1229-1233, 1991. Go to original source...
  18. Fghire R., Anaya F., Ali O.I. et al.: Physiological and photosynthetic response of quinoa to drought stress. - Chil. J. Agr. Res. 75: 174-183, 2015. Go to original source...
  19. Hsiao T.C.: Plant responses to water stress. - Ann. Rev. Plant Physio. 24: 519-570, 1973. Go to original source...
  20. Jeuffroy M.H., Ney B.: Crop physiology and productivity. - Field Crop. Res. 53: 3-16, 1997. Go to original source...
  21. Juzoń K., Czyczyło-Mysza I., Marcińska I. et al.: Polyamines in yellow lupine (Lupinus luteus L.) tolerance to soil drought. - Acta Physiol. Plant. 39: 202, 2017.
  22. Juzoń K., Skrzypek E., Czyczyło-Mysza I. et al.: Effect of soil drought on the yield structure, protein and phenolics content in Pisum sativum and Lupinus luteus. - Acta Agron. Hung. 61: 267-278, 2013.
  23. Kalaji H.M., Bosa K., Kościelniak J. et al.: Chlorophyll a fluorescence - a useful tool for the early detection of temperature stress in spring barley (Hordeum vulgare L.). - Omics 15: 925-934, 2011. Go to original source...
  24. Kalaji H.M., Jajoo A., Oukarroum A. et al.: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. - Acta Physiol. Plant. 38: 100-111, 2016. Go to original source...
  25. Karam F., Masaad R., Sfeir T. et al.: Evapotranspiration and seed field of field grown soybean under deficit irrigation conditions. - Agr. Water Manage. 75: 226-244, 2007. Go to original source...
  26. Kautsky H., Hirsch A.: Neue Versuche zur Kohlensäureassimilation. - Naturwissenschaften 19: 964, 1931. Go to original source...
  27. Kawakami K., Umena Y., Kamiya N., Shen J.R.: Location of chloride and its possible functions in oxygen-evolving photosystem II revealed by X-ray crystallography. - P. Natl. Acad. Sci. USA 106: 8567-8572, 2009. Go to original source...
  28. Komura M., Yamagishi A., Shibata Y., et al.: Mechanism of strong quenching of photosystem II chlorophyll fluorescence under drought stress in a lichen, Physciella melanchla, studied by subpicosecond fluorescence spectroscopy. - BBA 1797: 331-338, 2010. Go to original source...
  29. Konica Minolta: Chlorophyll meter SPAD-502Plus, 2009. Available at: https://www.konicaminolta.com/instruments/download/catalog/color/pdf/spad502plus_catalog_eng.pdf
  30. Kościelniak J., Filek W., Biesega-Kościelniak J.: The effect of drought stress on chlorophyll fluorescence in Lolium-Festuca hybrids. - Acta Physiol. Plant. 28: 149-158, 2006.
  31. Kulig B., Ziółek W.: [Yielding of morphologically diverse varieties of pea and faba bean depending on nitrogen fertilization.] - Zesz. Probl. Post. Nauk Rol. 446: 207-212, 1997. [In Polish]
  32. Lawson T., Oxborough K., Morrison J.I.L., Baker N.R.: Responses of photosynthetic electron transport in stomatal guard and mesophyll cells in intact leaves to light, CO2, and humidity. - Plant Physiol. 128: 52-62, 2002. Go to original source...
  33. Lazacano-Ferrat I., Lovat C.J.: Relationship between relative water content, nitrogen pools, and growth of Phaseolus vulgaris L. and P. acutifolius A. Gray during water deficit. - Crop. Sci. 39: 467-475, 1999. Go to original source...
  34. Lichtenthaler H.K., Buschmann C., Rinderle U., Schmuck G.: Application of chlorophyll fluorescence in ecophysiology. - Radiat. Environ. Bioph. 25: 297-308, 1986. Go to original source...
  35. Liu J.H., Nada K., Honda C. et al.: Polyamine biosynthesis of apple callus under salt stress: importance of arginine decarboxylase pathway in stress response. - J. Exp. Bot. 57: 2589-2599, 2006. Go to original source...
  36. Lu C., Zhang J.: Effects of water stress on photosystem II photochemistry and its thermostability in wheat plants. - J. Exp. Bot. 50: 1199-1206, 1999. Go to original source...
  37. Mafakheri A., Siosemardeh A., Bahramnejad B. et al.: Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. - Aust. J. Crop Sci. 4: 580-585, 2010.
  38. Marcińska I., Czyczyło-Mysza I., Skrzypek E. et al.: Application of photochemical parameters and several indices based on phenotypical traits to assess intraspecific variation of oat (Avena sativa L.) tolerance to drought. - Acta Physiol. Plant. 39: 153, 2017. Go to original source...
  39. Maxwell K., Johnson G.N.: Chlorophyll fluorescence - a practical guide. - J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  40. Medrano H., Escalona J.M., Bota J. et al.: Regulation of photo-synthesis of C3 plants in response to progressive drought: the stomatal conductance as a reference parameter. - Ann. Bot.-London 89: 895-905, 2002. Go to original source...
  41. Murchie E.H., Lawson T.: Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. - J. Exp. Bot. 64: 3983-3998, 2014.
  42. Ohashi Y., Nakayama N., Saneoka H., Fujita K.: Effects of drought stress on photosynthetic gas exchange, chlorophyll fluorescence and stem diameter of soybean plants. - Biol. Plantarum 50: 138-141, 2006. Go to original source...
  43. Osman H.S.: Enhancing antioxidant-yield relationship of pea plant under drought at different growth stages by exogenously applied glycine betaine and proline. - Ann. Agr. Sci. 60: 389-402, 2015. Go to original source...
  44. Pinheiro C., Chaves M.M., Ricardo C.P.: Alterations in carbon and nitrogen metabolism induced by water deficit in the stems and leaves of Lupinus albus L. - J. Exp. Bot. 52: 1063-1070, 2001. Go to original source...
  45. Podleśna A., Podleśny J., Doroszewski A.: Usefulness of selected weather indices to evaluation of yellow lupine yielding possibility - Agr. Water Manage. 146: 201-207, 2014. Go to original source...
  46. Qiu N., Lu C.: Enhanced tolerance of photosynthesis against high temperature damage in salt-adapted halophyte Atriplex centralasiatica plants. - Plant Cell Environ. 26: 1137-1145, 2003. Go to original source...
  47. Ramos M.L.G., Parsons R., Sprent J.I., James E.K.: Effect of water stress on nitrogen fixation and nodule structure of common bean. - Pesqui. Agropecu. Bras. 38: 339-347, 2003. Go to original source...
  48. Razmjoo K., Heydarizadeh P., Sabzalian M.S.: Effect of salinity and drought stresses on growth parameters and essential oil content of Matricaria chamomila. - Int. J. Agric. Biol. 10: 451-454, 2008.
  49. Reckling M., Bergkvist G., Watson C.A. et al.: Trade-offs between economic and environmental impacts of introducing legumes into cropping systems. - Front. Plant Sci. 7: 669, 2016. Go to original source...
  50. Roháček K.: Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. - Photosynthetica 40: 13-29, 2002. Go to original source...
  51. Souza R.P., Machado E.C., Silva J.A.B. et al.: Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. - Environ. Exp. Bot. 51: 45-56, 2004. Go to original source...
  52. Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 321-362. Springer, Dordrecht 2004. Go to original source...
  53. Tavoletti S., Iommarini L., Mogliani L. et al.: Agronomic, qualitative (b-ODAP) and molecular variability in grasspea populations of the Marche region (central Italy). - Food Chem. Toxicol. 49: 601-606, 2011. Go to original source...
  54. Tsonev T., Wahbi S., Sun P. et al.: Gas exchange, water relations photochemical reflectance index in stress and recovery and their relationships with Quercus ilex plants during water stress and recovery. - Int. J. Agric. Biol. 16: 335-341, 2014.
  55. Vyas S.P.: Impact and strategies for yield improvement of arid legumes under drought. - Int. J. App. Life Sci. Eng. 1: 12-19, 2014.
  56. Zaghloul R.A., Abou-Aly H.E., El-Meihy R.M., El-Saadony M.T.: Improvement of growth and yield of pea plants using integrated fertilization management. - Univ. J Agr. Res. 3: 135-143, 2015.