Photosynthetica, 2019 (vol. 57), issue 4

Photosynthetica 2019, 57(4):1035-1043 | DOI: 10.32615/ps.2019.122

Factors playing role in heat acclimation processes in barley and oat plants

É. DARKÓ1, R. KHALIL2, N. ELSAYED2, M. PÁL1, K.Á. HAMOW1,3, G. SZALAI1, J. TAJTI1, Q.T. NGUYEN5, N.T. NGUYEN5, V.N. LE5, T. JANDA1
1 Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 2462 Martonvásár, Hungary
2 Botany Department, Faculty of Science, Benha University, 13518 Benha, Egypt
3 Plant Protection Institute, Centre for Agricultural Research of the Hungarian Academy of Sciences, Budapest, Hungary
5 Center for Research and Technology Transfer (CRETECH), Vietnam Academy of Sciences and Technology, Hanoi, Vietnam

In the present study, the heat acclimation processes (growing at 30/27°C for 2 weeks) in spring and winter varieties of barley (Hordeum vulgare L., varieties 'Conchita' and 'Mv Initium') and oat (Avena sativa L., varieties 'Mv Pehely' and 'Mv Hópehely') were characterized. Temperature dependence of certain chlorophyll a fluorescence induction parameters indicated the efficiency of heat acclimation. Heat treatment induced the activity of glutathinone-S-transferase, but decreased the amounts of the major polyamines. A significant increase in cadaverine content was found in 'Conchita'. 1,3-diaminopropane contents after heat acclimation were lower in the oat and higher in the barley varieties than that in the control plants. Salicylic acid and para-hydroxybenzoic acid contents were also induced at elevated temperatures. Changes in abscisic acid differed in the two species. Results suggest that besides certain similarities, different strategies can be activated to avoid the damaging effects of high temperatures in barley and oat plants.

Keywords: hormone; oxidative stress; Poaceae; putrescine; reactive oxygen species; spermidine.

Received: July 15, 2019; Accepted: August 16, 2019; Prepublished online: September 12, 2019; Published: November 1, 2019Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
DARKÓ, É., KHALIL, R., ELSAYED, N., PÁL, M., HAMOW, K.Á., SZALAI, G., ... JANDA, T. (2019). Factors playing role in heat acclimation processes in barley and oat plants. Photosynthetica57(4), 1035-1043. doi: 10.32615/ps.2019.122.
Download citation

Supplementary files

Download file2336_table 1 supl.pdf

File size: 418.8 kB

Download file2336_table2 supl.pdf

File size: 316.26 kB

References

  1. Ádám A.L., Bestwick C.S., Barna B., Mansfield J.W.: Enzymes regulating the accumulation of active oxygen species during the hypersensitive reaction of bean to Pseudomonas syringae pv. phaseolicola. - Planta 197: 240-249, 1995. Go to original source...
  2. Allakhverdiev S.I., Kreslavski V.D., Klimov V.V. et al.: Heat stress: An overview of molecular responses in photosynthesis. -Photosynth. Res. 98: 541-550, 2008. Go to original source...
  3. Bita C.E., Gerats T.: Plant tolerance to high temperature in a changing environment: Scientific fundamentals and produc-tion of heat stress-tolerant crops. - Front. Plant Sci. 4: 273, 2013. Go to original source...
  4. Chai J., Liu J., Zhou J., Xing D.: Mitogen-activated protein kinase 6 regulates NPR1 gene expression and activation during leaf senescence induced by salicylic acid. - J. Exp. Bot. 65: 6513-6528, 2014. Go to original source...
  5. Dat J.F., Lopez-Delgado H., Foyer C.H., Scott I.M.: Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. - Plant Physiol. 116: 1351-1357, 1998. Go to original source...
  6. Ding N., Wang A., Zhang X. et al.: Identification and analysis of glutathione S-transferase gene family in sweet potato reveal divergent GST-mediated networks in aboveground and underground tissues in response to abiotic stresses. - BMC Plant Biol. 17: e225, 2017. Go to original source...
  7. Dixon D.P., Skipsey M., Edwards R.: Roles for glutathione trans-ferases in plant secondary metabolism. - Phytochemistry 71: 338-350, 2010. Go to original source...
  8. Dobrá J., Černý M., Štorchová H. et al.: The impact of heat stress targeting on the hormonal and transcriptomic response in Arabidopsis. - Plant Sci. 231: 52-61, 2015. Go to original source...
  9. Farhan A.A.J, Gull M., Rahimuddin S.A. et al.: Antimicrobial activity and biochemical profiling of selected medicinal plants against blood cancer clinical isolates. - Biosci. Biotech. Res. Asia 14: 1277-1284, 2017. Go to original source...
  10. Fariduddin Q., Khan T.A., Yusuf M. et al.: Ameliorative role of salicylic acid and spermidine in the presence of excess salt in Lycopersicon esculentum. - Photosynthetica 56: 750-762, 2018. Go to original source...
  11. Fariduddin Q., Varshney P., Yusuf M., Ahmad A.: Polyamines: potent modulators of plant responses to stress. - J. Plant Interact. 8: 1-16, 2013. Go to original source...
  12. Gill S.S., Tuteja N.: Polyamines and abiotic stress tolerance in plants. - Plant Signal. Behav. 5: 26-33, 2010. Go to original source...
  13. Gondor O.K., Szalai G., Kovács V. et al.: Relationship between polyamines and other cold-induced response mechanisms in different cereal species. - J. Agron. Crop Sci. 202: 217-230, 2016. Go to original source...
  14. Goyal M., Asthir B.: Polyamine catabolism influences anti-oxidative defense mechanism in shoots and roots of five wheat genotypes under high temperature stress. - Plant Growth Regul. 60: 13-25, 2010. Go to original source...
  15. Haisel D., Pospíšilová J., Synková H. et al.: Effects of abscisic acid or benzyladenine on pigment contents, chlorophyll fluorescence, and chloroplast ultrastructure during water stress and after rehydration. - Photosynthetica 44: 606-614, 2006. Go to original source...
  16. Hernández F., Poverene M., Presotto A.: Heat stress effects on reproductive traits in cultivated and wild sunflower (Helianthus annuus L.): evidence for local adaptation within the wild germplasm. - Euphytica 214: 146, 2018. Go to original source...
  17. Hu L., Xiang L., Zhang L. et al.: The photoprotective role of spermidine in tomato seedlings under salinity-alkalinity stress. - PLoS ONE 9: e110855, 2014. Go to original source...
  18. Islam M.R., Feng B., Chen T., Tao L.: Role of abscisic acid in thermal acclimation of plants. - J. Plant Biol. 61: 255-264, 2018. Go to original source...
  19. Jancewicz A.L., Gibbs N.M., Masson P.H.: Cadaverine's functional role in plant development and environmental response. - Front. Plant Sci. 7: 870, 2016. Go to original source...
  20. Janda T., Gondor O.K., Yordanova R. et al.: Salicylic acid and photosynthesis: signalling and effects. - Acta Physiol. Plant. 36: 2537-2546, 2014. Go to original source...
  21. Janda T., Szalai G., Lesko K. et al.: Factors contributing to enhanced freezing tolerance in wheat during frost hardening in the light. - Phytochemistry 68: 1674-1682, 2007. Go to original source...
  22. Janda T., Szalai G., Tari I., Páldi E.: Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. - Planta 208: 175-180, 1999. Go to original source...
  23. Khan M.I.R., Fatma M., Per T.S. et al.: Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. -Front. Plant Sci. 6: 462, 2015. Go to original source...
  24. Khan M.I.R., Iqbal N., Masood A. et al.: Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. - Plant Signal. Behav. 8: e26374, 2013. Go to original source...
  25. Klughammer C., Schreiber U.: Complementary PS II quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the Saturation Pulse method. - PAM Application Notes 1: 27-35, 2008.
  26. Larkindale J., Hall J.D., Knight M.R., Vierling E.: Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. - Plant Physiol. 138: 882-897, 2005. Go to original source...
  27. Larkindale J., Knight M.R.: Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. - Plant Physiol. 128: 682-695, 2002. Go to original source...
  28. Mannervik B., Guthenberg C.: Glutathione transferase (Human placenta). - Method. Enzymol. 77: 231-235, 1981. Go to original source...
  29. Minocha R., Majumdar R., Minocha S.C.: Polyamines and abiotic stress in plants: A complex relationship. - Front. Plant Sci. 5: 175, 2014. Go to original source...
  30. Mostofa M.G., Yoshida N., Fujita M.: Spermidine pretreatment enhances heat tolerance in rice seedlings through modulating antioxidative and glyoxalase systems. - Plant Growth Regul. 73: 31-44, 2014. Go to original source...
  31. Németh M., Janda T., Horváth E. et al.: Exogenous salicylic acid increases polyamine content but may decrease drought tolerance in maize. - Plant Sci. 162: 569-574, 2002. Go to original source...
  32. Ohama N., Sato H., Shinozaki K., Yamaguchi-Shinozaki K.: Transcriptional regulatory network of plant heat stress response. - Trends Plant Sci. 22: 53-65, 2017. Go to original source...
  33. Pál M., Csávás G., Szalai G. et al.: Polyamines may influence phytochelatin synthesis during Cd stress in rice. - J. Hazard. Mater. 340: 272-280, 2017. Go to original source...
  34. Pál M., Ivanovska B., Oláh T. et al.: Role of polyamines in plant growth regulation of Rht wheat mutants. - Plant Physiol. Bioch. 137: 189-202, 2019.
  35. Pál M., Kovács V., Szalai G. et al.: Salicylic acid and abiotic stress responses in rice. - J. Agron. Crop Sci. 200: 1-11, 2014. Go to original source...
  36. Pál M., Szalai G., Janda T.: Speculation: polyamines are important in abiotic stress signaling. - Plant Sci. 237: 16-23, 2015. Go to original source...
  37. Pál M., Tajti J., Szalai G. et al.: Interaction of polyamines, abscisic acid and proline under osmotic stress in the leaves of wheat plants. - Sci. Rep. 8: 12839, 2018. Go to original source...
  38. Pasternak T., Groot E.P., Kazantsev F. et al.: Salicylic acid affects root meristem patterning via auxin distribution in a concentration-dependent manner. - Plant Physiol. 180: 1725-1739, 2019. Go to original source...
  39. Smith I.K., Vierheller T.L., Thorne C.A.: Assay of glutathione reductase in crude tissue homogenates using 5,5'-dithiobis (2-nitrobenzoic acid). - Anal. Biochem. 175: 408-413, 1988. Go to original source...
  40. Suzuki N., Katano K.: Coordination between ROS regulatory systems and other pathways under heat stress and pathogen attack. - Front. Plant Sci. 9: 490, 2018. Go to original source...
  41. Szalai G., Janda K., Darkó É. et al.: Comparative analysis of polyamine metabolism in wheat and maize plants. - Plant Physiol. Bioch. 112: 239-250, 2017. Go to original source...
  42. Tiburcio A.F., Altabella T., Bitrián M., Alcázar R.: The roles of polyamines during the lifespan of plants: from development to stress. - Planta 240: 1-18, 2014. Go to original source...
  43. Tripathy B.C., Oelmüller R.: Reactive oxygen species generation and signaling in plants. - Plant Signal. Behav. 7: 1621-1633, 2012. Go to original source...
  44. Végh B., Marček T., Karsai I. et al.: Heat acclimation of photo-synthesis in wheat genotypes of different origin. - S. Afr. J. Bot. 117: 184-192, 2018. Go to original source...
  45. Volkov R.A., Panchuk I.I., Mullineaux P.M., Schöffl F.: Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. - Plant Mol. Biol. 61: 733-746, 2006. Go to original source...
  46. Xu S., Li J., Zhang X. et al.: Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. - Environ. Exp. Bot. 56: 274-285, 2006. Go to original source...