Photosynthetica, 2019 (vol. 57), issue 4

Photosynthetica 2019, 57(4):1156-1164 | DOI: 10.32615/ps.2019.136

Changes in photosynthetic and chlorophyll fluorescence characteristics of sorghum under drought and waterlogging stress

F. ZHANG1,2, K. ZHU2, Y.Q. WANG2, Z.P. ZHANG2, F. LU2, H.Q. YU1, J.Q. ZOU2
1 Agronomy Courtyard, Shenyang Agricultural University, Dongling Road 120, Shenhe District, Shenyang, 110866 Liaoning, China
2 Sorghum Institute, Liaoning Academy of Agricultural Sciences, Dongling Road 84, Shenyang, 110161 Liaoning, China

Water stress is a key factor limiting sorghum growth and yield potential. This study investigated the changes in morphology, photosynthetic parameters, and fluorescence characteristics of sorghum under drought and waterlogging stress. The results indicated that these two types of water stress limited sorghum growth and led to a decrease in leaf chlorophyll (Chl), especially Chl a, which was accompanied by a decrease in net photosynthetic rate. In addition, under both types of water stress, the light-compensation point (LCP) and light-saturation point (LSP) both decreased, but the effect on these parameters was more obvious under drought. In terms of fluorescence parameters, the initial fluorescence and variable fluorescence increased under drought and waterlogging stress, while the maximum fluorescence did not change significantly, and the electron transport rate, photochemical quenching, and PSII actual quantum yield decreased. In summary, these results suggest that sorghum adapts to drought and waterlogging stress by reducing the leaf Chl a content, reducing LCP and LSP, and changing fluorescence parameters.

Keywords: drought stress; excessive soil moisture; gas exchange; photosynthesis; Sorghum bicolor.

Received: June 15, 2019; Accepted: October 2, 2019; Prepublished online: October 22, 2019; Published: November 1, 2019Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
ZHANG, F., ZHU, K., WANG, Y.Q., ZHANG, Z.P., LU, F., YU, H.Q., & ZOU, J.Q. (2019). Changes in photosynthetic and chlorophyll fluorescence characteristics of sorghum under drought and waterlogging stress. Photosynthetica57(4), 1156-1164. doi: 10.32615/ps.2019.136.
Download citation

References

  1. Abid M., Ali S., Qi L.K. et al.: Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). - Sci. Rep.-UK 8: 4615, 2018. Go to original source...
  2. Ashraf M., Harris P.J.C.: Photosynthesis under stressful environments: An overview. - Photosynthetica 51: 163-190, 2013. Go to original source...
  3. Bai J., Xu D.H., Kang H.M. et al.: Photoprotective function of photorespiration in Reaumuria soongorica during dif-ferent levels of drought stress in natural high irradiance. - Photosynthetica 46: 232-237, 2008. Go to original source...
  4. Dannehl H., Wietoska H., Heckmann H., Godde D.: Change in D-protein turnover and recovery of photosystem II activity precede accumulation of chlorophyll in plants after release from mineral stress. - Planta 199: 34-42, 1996. Go to original source...
  5. Downie A., Miyazaki S., Bohnert H. et al.: Expression profiling of the response of Arabidopsis thaliana to methanol stimulation. -Phytochemistry 65: 2305-2316, 2004. Go to original source...
  6. Elsheery N.I., Cao K.F.: Gas exchange, chlorophyll fluorescence, and osmotic adjustment in two mango cultivars under drought stress. - Acta Physiol. Plant. 30: 769-777, 2008. Go to original source...
  7. Gomes-Laranjo J., Coutinho J.P., Galhano V., Cordeiro V.: Responses of five almond cultivars to irrigation: Photosynthesis and leaf water potential. - Agr. Water Manage. 83: 261-265, 2006. Go to original source...
  8. Guan X., Gu S.: Photorespiration and photoprotection of grapevine (Vitis vinifera L. cv. Cabernet Sauvignon) under water stress. - Photosynthetica 47: 437-444, 2009. Go to original source...
  9. Guo Y.Y., Yu H.Y., Yang M.M. et al.: Effect of drought stress on lipid peroxidation, osmotic adjustment and antioxidant enzyme activity of leaves and roots of Lycium ruthenicum Murr. seedling. - Russ. J. Plant Physl+ 65: 244-250, 2018. Go to original source...
  10. Houx J.H., Fritschi F.B.: Influence of midsummer planting dates on ethanol production potential of sweet sorghum. - Agron. J. 105: 1761-1768, 2013. Go to original source...
  11. Hymus G.J., Snead T.G., Johnson D.P.: Acclimation of photosynthesis and respiration to elevated atmospheric CO2 in two Scrub Oaks. - Glob. Change Biol. 8: 317-328, 2002. Go to original source...
  12. Kadam S., Abril A., Dhanapal A.P. et al.: Characterization and regulation of aquaporin genes of sorghum [Sorghum bicolor (L.) Moench] in response to waterlogging stress. - Front. Plant Sci. 8: 862-869, 2017. Go to original source...
  13. Kalaji H.M., Jajoo A., Oukarroum A. et al.: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. - Acta Physiol. Plant. 38: 102, 2016. Go to original source...
  14. Kataria S., Baghel L., Guruprasad K.N.: Effect of seed pretreatment by magnetic field on the sensitivity of maize seedlings to ambient ultraviolet radiation (280-400 nm). - Int. J. Trop. Agric. 33: 3645-3652, 2015.
  15. Kato M.C., Hikosaka K., Hirotsu N. et al.: The excess light energy that is neither utilized in photosynthesis nor dissipated by photoprotective mechanisms determines the rate of photoinactivation in photosystem II. - Plant Cell Physiol. 44: 318-325, 2003. Go to original source...
  16. Khan M.S.A., Karim M.A., Haque M.M. et al.: Influence of salt and water stress on growth and yield of soybean genotypes. - Trop. Agric. Sci. 39: 167-180, 2016.
  17. Li L., Wang F., Yan P. et al.: A phosphoinositide-specific phospholipase C pathway elicits stress-induced Ca2+ signals and confers salt tolerance to rice. - New Phytol. 214: 1172-1187, 2017. Go to original source...
  18. Liu R.X., Chen B.L., Wang Y.H. et al.: [Effects of nitrogen on cotton root growth under drought stress and after watering during flowering and boll-forming stages.] - Chin. J. Plant Ecol. 33: 405-413, 2009. [In Chinese]
  19. Murata N., Takahashi S., Nishiyama Y., Allakhverdiev S.I.: Photo-inhibition of photosystem II under environmental stress. -BBA-Bioenergetics 1767: 414-421, 2007. Go to original source...
  20. O'Shaughnessy S.A., Evett S.R., Colaizzi P.D., Howell T.A.: A crop water stress index and time threshold for automatic irrigation scheduling of grain sorghum. - Agr. Water Manage. 107: 122-132, 2012. Go to original source...
  21. Peri P.L., Arena M.E., Martínez Pastur G.J., Lencinas M.V.. et al.: Photosynthetic response to different light intensities, water status and leaf age of two Berberis species (Berberidaceae) of Patagonian steppe, Argentina. - J. Arid. Environ. 75: 1218-1222, 2011. Go to original source...
  22. Radhakrishnan R., Leelapriya T., Kumari B.D.: Effects of pulsed magnetic field treatment of soybean seeds on calli growth, cell damage and biochemical changes under salt stress. - Bioelectromagnetics 33: 670-681, 2012. Go to original source...
  23. Rahbarian R., Khavari-Nejad R., Ganjeali A. et al.: Drought stress effects on photosynthesis, chlorophyll fluorescence and water relations in tolerant and susceptible chickpea (Cicer arietinum L.) genotypes. - Acta. Biol. Cracov. Bot. 53: 47-56, 2011. Go to original source...
  24. Raines C.A.: Increasing photosynthetic carbon assimilation in C3 plant to improve crop yield: Current and future strategies. - Plant Physiol. 155: 36-42, 2011. Go to original source...
  25. Redondo-Gómez S., Mateos-Naranjo E., Moreno F.J.: Physio-logical characterization of photosynthesis, chloroplast ultra-structure, and nutrient content in bracts and rosette leaves from Glaucium flavum. - Photosynthetica 48: 488-493, 2010. Go to original source...
  26. Ren J., Dai W.R., Xuan Z.Y. et al.: The effect of drought and enhanced UV-B radiation on the growth and physiological traits of two contrasting poplar species. - Forest Ecol. Manag. 239: 112-119, 2007. Go to original source...
  27. Shao R.X., Xin L.F., Zheng H.F. et al.: Changes in chloroplast ultrastructure in leaves of drought-stressed maize inbred lines. - Photosynthetica 54: 74-80, 2016. Go to original source...
  28. Sun Y.Y., Sun Y.J., Wang M.T. et al.: [Effects of seed priming on germination and seedling growth under water stress in rice.] - Acta Agron. Sin. 36: 1931-1940, 2010. [In Chinese]
  29. Tambussi E.A., Nogués S., Araus J.L.: Ear of durum wheat under water stress: water relations and photosynthetic metabolism. -Planta 221: 446-458, 2005. Go to original source...
  30. Tang A.C., Kawamitsu Y., Kanechi M., Boyer J.S.: Photosynthetic oxygen evolution at low water potential in leaf discs lacking an epidermis. - Ann. Bot.-London 89: 861-870, 2002. Go to original source...
  31. Ullah A., Manghwar H., Shaban M. et al.: Phytohormones enhanced drought tolerance in plants: A coping strategy. - Environ. Sci. Pollut. R. 25: 33103-33118, 2018. Go to original source...
  32. Vandoorne B., Mathieu A.S., Van den Ende W. et al.: Water stress drastically reduces root growth and inulin yield in Cichorium intybus (var. sativum) independently of photosynthesis. - J. Exp. Bot. 63: 4359-4373, 2012. Go to original source...
  33. Viator S., Alison W., Harrell D. et al.: Production of Sweet Sorghum in Louisiana as a Biofuel Feedstock Crop. Louisiana State University Agricultural Center, Baton Rouge 2010.
  34. Wang C., Isoda A., Wang P.: Growth and yield performance of some cotton cultivars in Xinjiang, China, an arid area with short growing period. - J. Agron. Crop Sci. 190: 177-183, 2004. Go to original source...
  35. Wang X., Shi Y., Wang Q., Li Y.: Dorsoventral regulation of photosynthetic functions related to morphological and anato-mical structures in field-grown sorghum. - Photosynthetica 57: 607-616, 2019b. Go to original source...
  36. Wang Y.W., Jiang D.X., Hou J.J., Chen G.X.: Physiological characterization and thylakoid ultrastructure analysis in super high-yield hybrid rice leaves under drought stress. - Photosynthetica 57: 890-896, 2019a. Go to original source...
  37. Waraich E.A., Ahmad R., Ashraf M.Y. et al.: Improving agricultural water use efficiency by nutrient management in crop plants. - Acta Agr. Scand. B-S. P. 61: 291-304, 2011.
  38. Wullschleger S.D., Oosterhuis D.M.: Photosynthesis, transpira-tion, and water-use efficiency of cotton leaves and fruit. - Photosynthetica 25: 505-515, 1991.
  39. Xu C.X., Lv Y., Chen C.F. et al.: Blue light-dependent phosphorylations of cryptochromes are affected by magnetic fields in Arabidopsis. - Adv. Space Res. 53: 1118-1124, 2014b. Go to original source...
  40. Xu W., Ji S.: [Application of DPS data processing system in biostatistical analysis.] - J. Shandong Agr. Univ. 24: 24-27, 2014a. [In Chinese]
  41. Yin C.Y., Berninger F., Li C.Y.: Photosynthetic responses of Populus przewalski subjected to drought stress. - Photosynthetica 44: 62-68, 2006. Go to original source...
  42. Zaidi P.H., Rafique S., Singh N.N.: Response of maize (Zea mays L.) genotypes to excess soil moisture stress: Morpho-physiological effects and basis of tolerance. - Eur. J. Agron. 19: 383-399, 2003. Go to original source...
  43. Zhang X.Z.: [Crop Physiology Research Method.] Pp. 38-45. China Agricultural Press, Beijing 1992. [In Chinese]
  44. Zhou Y.F., Wang D.Q., Lu Z.B. et al.: [Effects of drought stress on photosynthetic characteristics and endogenous hormone ABA and CTK contents of green sorghum.] - Sci. Agr. Sin. 47: 655-663, 2014. [In Chinese]
  45. Zlatev Z.S., Yordanov I.T.: Effects of soil drought on photosynthesis and chlorophyll fluorescence in bean plants. - Bulg. J. Plant Physiol. 30: 3-18, 2004.
  46. Zou J.N., Jin X.J., Zhang Y.X. et al.: Effects of melatonin on photosynthesis and soybean seed growth during grain filling under drought stress. - Photosynthetica 57: 512-520, 2019. Go to original source...