Photosynthetica, 2019 (vol. 57), issue 4

Photosynthetica 2019, 57(4):1165-1175 | DOI: 10.32615/ps.2019.099

Ecophysiological study of the impact of SiK® fertilization on Castanea sativa Mill. seedling tolerance to high temperature

A. CARNEIRO-CARVALHO1, R. ANJOS1, A. AIRES1, T. MARQUES2, T. PINTO1, J. GOMES-LARANJO1
Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Tras-os-Montes and Alto Douro (UTAD), Vila Real, Portugal1
University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal2

The aim of this work was to evaluate the impact of Si fertilization on the resilience capacity of chestnut plants growing under high air temperatures and its recovery capacity after returning to optimal temperatures. Castanea sativa plants were supplied with 0, 5, 7.5, and 10 mM potassium silicate (SiK®) and exposed for a month at each temperature, 25, 32, and 25°C. The results demonstrated that phytoliths were accumulated in the leaf tissues, both on the cell wall and xylem vessels, suggesting their role in the plant's tolerance to heat. Under high temperature, Si fertilization in chestnut plants increased the gas exchange and the photochemical efficiency of the PSII as the increase of 50% on performance index suggests. The presence of Si also induced higher contents of photosynthetic pigments and promoted a better adaptation of chloroplasts to high temperatures. The present study suggests that the application of Si may be used to enhance the high temperature tolerance of chestnut plants.

Keywords: chloroplast activity; fluorescence transient; heat stress; lipids; silicon.

Received: March 20, 2019; Accepted: June 7, 2019; Prepublished online: October 31, 2019; Published: November 1, 2019Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
CARNEIRO-CARVALHO, A., ANJOS, R., AIRES, A., MARQUES, T., PINTO, T., & GOMES-LARANJO, J. (2019). Ecophysiological study of the impact of SiK® fertilization on Castanea sativa Mill. seedling tolerance to high temperature. Photosynthetica57(4), 1165-1175. doi: 10.32615/ps.2019.099.
Download citation

Supplementary files

Download fileCarneiro-Carvalho 2248 - Table 1S + Fig. 1S.docx

File size: 191.92 kB

References

  1. Agarie S., Hanaoka N., Ueno O. et al.: Effect of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L.), monitored by electrolyte leakage. - Plant Prod. Sci. 1: 96-103, 1998. Go to original source...
  2. Ahanger R.A., Bhat H.A., Bhat T.A. et al.: Impact of climate change on plant diseases. - Int. J. Mod. Plant Animal Sci. 1: 105-115, 2013.
  3. Ahmed M., Asif M., Goyal A.: Silicon the non-essential beneficial plant nutrient to enhanced drought tolerance in wheat. - In: Goyal A. (ed.): Crop Plant. Pp. 31-48. InTech, 2012.
  4. Al-aghabary K., Zhu Z., Shi Q.: Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. - J. Plant Nutr. 27: 2101-2115, 2005.
  5. Albertson P. A., Âkerlund, H.E.: Structure and function of the photosynthetic membrane. Center for Molecular Protein Science, Lund University. http://www.cmps.lu.se/biostruct/people/per-aake-albertsson/structure-and-function-of-the-photosynthetic-membrane/, 2015. (Accessed 20 May 2019).
  6. APA: Portuguese Environment Agency with the cooperation of Ecoprogresso. https://www.climatechangepost.com/portugal/climate-change/, 2009. (Accessed 10 September 2017).
  7. Ashraf M., Harris P.J.C.: Photosynthesis under stressful environments: an overview. - Photosynthetica 51: 163-190, 2013. Go to original source...
  8. Bacarin M.A, Deuner S., da Silva F.S.P. et al.: Chlorophyll a fluorescence as indicative of the salt stress on Brassica napus L. - Braz. J. Plant Physiol. 23: 245-253, 2011. Go to original source...
  9. Balakhnina T., Borkowska A.: Effects of silicon on plant resis-tance to environmental stresses: review. - Int. Agrophys. 27: 225-232, 2013. Go to original source...
  10. Bita C.E., Gerats T.: Plant tolerance to high temperature in a changing environment: Scientific fundamentals and pro-duction of heat stress-tolerant crops. - Front. Plant Sci. 4: 273, 2013. Go to original source...
  11. Bligh E.G., Dyer W.J.: A rapid method of total lipid extraction and purification. - Can. J. Biochem. Phys. 37: 912-919, 1959.
  12. Carneiro-Carvalho A., Pereira C., Marques T. et al.: Potential of silicon fertilization in the resistance of chestnut plants to ink disease (Phytophthora cinnamomi). - Int. J. Environ. Agr. Biotech. 2: 2740-2753, 2017.
  13. Carnelli A.L., Madella M., Theurillat J.P.: Biogenic silica production in selected alpine plant species and plant communities. - Ann. Bot.-London 87: 425-434, 2001. Go to original source...
  14. Carvalho A., Schmidt L., Santos F.D., Delicado A.: Climate change research and policy in Portugal. - Wires Clim. Change 5: 199-217, 2014. Go to original source...
  15. Conedera M., Tinner W., Krebs P. et al.: Castanea sativa in Europe: Distribution, habitat, usage and threats. - In: San-Miguel-Ayanz J., De Rigo D., Caudullo G. et al. (ed.): European Atlas of Forest Tree Species. Pp. 78-79. European Union, Luxembourg 2016.
  16. Cooke J., Leishman M.R.: Is plant ecology more siliceous than we realise? - Trends Plant Sci. 16: 61-68, 2011. Go to original source...
  17. da Silva Lobato A.K., Guedes E.M.S., Marques D.J., de Oliveira Neto C.F.: Silicon: A benefic element to improve tolerance in plants exposed to water deficiency. - In: Akinci S. (ed.): Responses of Organisms to Water Stress. Pp. 95-113. IntechOpen, 2013.
  18. Das M., Hajong M., Majumdar D. et al.: Climate change impacts on plant diseases. - SAARC J. Agr. 14: 200-209, 2016.
  19. Falcone D.L., Ogas J.P., Somerville C.R..: Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition. -BMC Plant Biol. 4: 17, 2004. Go to original source...
  20. Fernández-López J., Alía R.: Chestnut (Castanea sativa). Technical Guidelines for Genetic Conservation and Use. Pp. 6. EUFORGEN, Rome 2003.
  21. Giannakoula A.E., Ilias I.E.: The effect of water stress and salinity on growth and physiology of tomato (Lycopersicon esculentum Mill.). - Arch. Biol. Sci. 65: 611-620, 2013. Go to original source...
  22. Gombos Z., Wada H., Hideg E., Murata N.: The unsaturation of membrane lipids stabilizes photosynthesis against heat stress. - Plant Physiol. 104: 563-567, 1994. Go to original source...
  23. Gomes-Laranjo J., Araújo-Alves J., Ferreira-Cardoso J. et al.: Effect of chestnut ink disease on photosynthetic performance. -J. Phytopathol. 152: 138-144, 2004. Go to original source...
  24. Gomes-Laranjo J., Coutinho J.P., Galhano V., Ferreira-Cardoso J.: Differences in photosynthetic apparatus of leaves from different sides of the chestnut canopy. - Photosynthetica 46: 63-72, 2008a. Go to original source...
  25. Gomes-Laranjo J., Coutinho J.P., Peixoto F. et al.: [Ecology of chestnut.] - In: Gomes-Laranjo J., Cardoso J.F., Portela E., Abreu C.G. (ed.): [Chestnut.] Pp. 109-149. University of Trás-os-Montes and Alto Douro, Vila Real 2007. [In Portuguese]
  26. Gomes-Laranjo J., Coutinho J.P., Peixoto F.: Ecophysiological characterization of C. sativa Mill. - Acta Hortic. 784: 99-106, 2008b. Go to original source...
  27. Gomes-Laranjo J.C.E., Peixoto F., Wong Fong Sang H.W., Torres-Pereira J.: Study of the temperature effect in three chestnut (Castanea sativa Mill.) cultivars' behaviour. - J. Plant Physiol. 163: 945-955, 2006. Go to original source...
  28. Habibi G., Hajiboland R.: Alleviation of drought stress by silicon supplementation in pistachio (Pistacia vera L.) plants. - Folia Hortic. 25: 21-29, 2013. Go to original source...
  29. Habibi G.: Effect of foliar-applied silicon on photochemistry, antioxidant capacity and growth in maize plants subjected to chilling stress. - Acta Agr. Slov. 107: 33-43, 2016. Go to original source...
  30. Hajiboland R.: Effect of micronutrient deficiencies on plants stress responses. - In: Ahmad P., Prasad M.N.V. (ed.): Abiotic Stress Responses in Plants. Pp. 283-329. Springer, New York 2012. Go to original source...
  31. Kalaji H.M., Govindjee, Bosa K. et al.: Effects of salt stress on photosystem II efficiency and CO2 assimilation in two syrian barley landraces. - Environ. Exp. Bot. 73: 64-72, 2011. Go to original source...
  32. Kavitha C.H., Murugan K.: Photochemical efficacy analysis using chlorophyll fluorescence of Dicranopteris linearis in response to dessiccation and rehydration stress. - Biosci. Biotech. Res. Commun. 9: 439-444, 2016.
  33. Kim Y.H, Khan A.L., Waqas M., Lee I.J.: Silicon regulates antioxidant activities of crop plants under abiotic-induced oxidative stress: A review. - Front. Plant Sci. 8: 510, 2017. Go to original source...
  34. Korndörfer G.H., Pereira H.S., Nolla A.: [Silicon analysis: soil, plant and fertilizer.] - UFU-ICIAGGPSi. Bol. Tec. 2: 1-34, 2004. [In Portuguese]
  35. Larkindale J., Hall J.D., Knight M.R., Vierling E.: Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. - Plant. Physiol. 138: 882-897, 2005b. Go to original source...
  36. Larkindale J., Mishkind M., Vierling E.: Plant responses to high temperature. - In: Jenks M.A., Hasegawa P.M. (ed.): Plant Abiotic Stress. Pp. 103-143. Blackwell Publishing, New Jersey, 2005a.
  37. Latef A.A.H.A., Tran L.S.P.: Impacts of priming with silicon on the growth and tolerance of maize to alkaline stress. - Front. Plant Sci. 7: 243, 2016.
  38. Liang Y., Nikolic M., Bélanger R. et al.: Silicon in Agriculture: From Theory to Practice. Pp. 235. Springer, New York 2015.
  39. Lichtenthaler H.K.: Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. - Method. Enzymol. 148: 350-382, 1987. Go to original source...
  40. Lipiec J., Doussan C., Nosalewicz A., Kondracka K.: Effect of drought and heat stresses on plant growth and yield: A review. - Int. Agrophys. 27: 463-477, 2013. Go to original source...
  41. Liu X., Huang B.: Changes in fatty acid composition and saturation in leaves and roots of creeping bentgrass exposed to high soil temperature. - J. Am. Soc. Hortic. Sci. 129: 795-801, 2004. Go to original source...
  42. Maghsoudi K., Emam Y., Ashraf M.: Influence of foliar applica-tion of silicon on chlorophyll fluorescence, photosynthetic pigments, and growth in water-stressed wheat cultivars differing in drought tolerance. - Turk. J. Bot. 39: 625-634, 2015. Go to original source...
  43. Martinazzo E.G., Ramm A., Bacarin M.A.: The chlorophyll a fluorescence as an indicator of the temperature stress in the leaves of Prunus persica. - Braz. J. Plant Physiol. 24: 237-246, 2012.
  44. Mathur S., Allakhverdiev S.I., Jajoo A.: Analysis of high temperature stress on the dynamics of antenna size and reducing side heterogeneity of photosystem II in wheat leaves (Triticum aestivum). - BBA-Bioenergetics 1807: 22-29, 2011.
  45. Mattson N.S., Leatherwood W.R.: Potassium silicates drenches increase leaf silicon content and affect morphological traits of several floriculture crops grown in a peat-based substrate. - HortScience 45: 43-47, 2010. Go to original source...
  46. Mota M., Marques T., Pinto T.: [Effect of watering on chestnut tree photosynthetic productivity.] - Simp. Nac. Frut. 1: 166-173, 2014. [In Portuguese]
  47. Murakami Y., Tsuyama M., Kobayashi Y. et al.: Trienoic fatty acids and plant tolerance of high temperature. - Science 287: 476-479, 2000.
  48. Pamplona R., Portero-Otín M.J.R., Requena J.R.: A low degree of fatty acid unsaturation leads to lower lipid peroxidation and lipoxidation-derived protein modification in heart mitochondria of the longevous pigeon than in the short-lived rat. - Mech. Ageing Dev. 106: 283-296, 1999. Go to original source...
  49. Perdono J.A., Capó-Bauçà S., Carmo-Silva E.: Rubisco and Rubisco activase play an important role in the biochemical limitations of photosynthesis in rice, wheat, and maize under high temperature and water deficit. - Front. Plant Sci. 8: 490, 2017. Go to original source...
  50. Pshybytko N., Kruk J., Kabashnikova L.F., Strzalka K.: Function of plastoquinone in heat stress reactions of plants. - BBA-Bioenergetics 1777: 1393-1399, 2008. Go to original source...
  51. Pushpalatha P., Sharma-Natu P., Ghildiyal M.C.: Photosynthetic response of wheat cultivar to long-term exposure to elevated temperature. - Photosynthetica 46: 552-556, 2008. Go to original source...
  52. Quigley K.M., Anderson T.M.: Leaf silica concentration in Serengeti grasses increases with watering but not clipping: Insights from a common garden study and literature review. -Front. Plant Sci. 5: 568, 2014. Go to original source...
  53. Reynolds O.L., Padula M.P., Zeng R., Gurr G.M.: Silicon: Potential to promote direct and indirect effects on plant defense against arthropod pests in agriculture. - Front. Plant Sci. 7: 744, 2016. Go to original source...
  54. Rosa D., Catalá A.: Fatty acid profiles and non enzymatic lipid peroxidation of microsomes and mitochondria from bovine liver, kidney, lung and heart. - Arch. Physiol. Biochem. 106: 33-37, 1998. Go to original source...
  55. Rubinowska K., Pogroszewska E., Laskowska H. et al.: The subsequent effect of silicon on physiological and biochemical parameters of Polygonatum multiflorum (L.) All. 'Variegatum' cut shoots. - Acta Sci. Pol.-Hortoru. 13: 167-178, 2014.
  56. Ruzin S.E.: Plant Microtechnique. Pp. 127-129. The Iowa State College Press, Iowa 1999.
  57. Rykaczewska K., Mankowski D.: The effect of physiological age of potato plants on chosen chlorophyll fluorescence parameters. - Plant Soil Environ. 10: 462-467, 2015.
  58. Sattar A., Cheema M.A., Abbas T. et al.: Physiological response of late sown wheat to exogenous application of silicon. - Cereal Res. Commun. 45: 202-213, 2017. Go to original source...
  59. Savvas D., Ntatsi G.: Biostimulant activity of silicon in horticulture. - Sci. Hortic.-Amsterdam 196: 66-81, 2015.
  60. Šesták Z., Čatský J., Jarvis P.G.: Plant Photosynthetic Production: Manual of Methods. Pp. 819. Dr. W. Junk N. V., The Hague 1971.
  61. Shakoor S.A., Bhat M.A., Mir S.H.: Phytoliths in plants: A review. - J. Bot. Sci. 10: 10-24, 2015.
  62. Shen X., Zhou Y., Duan L. et al.: Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. - J. Plant Physiol. 167: 1248-1252, 2010. Go to original source...
  63. Sivanesan I., Moon Sook S., Soundararajan P., Byoung Ryong J.: Effect of silicon on growth and temperature stress tolerance of Nephrolepsis exaltata 'Corditas'. - Korean J. Hortic. Sci. 32: 142-148, 2014.
  64. Soundararajan P., Sivanesan I., Jana S., Jeong B.R.: Influence of silicon supplementation on the growth and tolerance to high temperature in Salvia splendens. - Hortic. Environ. Biote. 55: 271-279, 2014. Go to original source...
  65. Strasser R.J., Srivastava A., Tsimilli-Michael M.: The fluorescence transient as a tool to characterize and screen photosynthetic samples. - In: Yunus M., Pathre U., Mohanty P. (ed.): Probing Photosynthesis: Mechanism, Regulation and Adaptation. Pp. 443-480. Taylor and Francis, London 2000.
  66. Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 321-362. Springer, Dordrecht 2004. Go to original source...
  67. Tankari M., Wang C., Zhang X. et al.: Leaf gas exchange, plant water relations and water use efficiency of Vigna unguiculata L. Walp inoculated with rhizobia under different soil water regimes. - Water 11: 498, 2019. Go to original source...
  68. Tóth S.Z., Schansker G., Garab G., Strasser R.J.: Photosynthetic electron transport activity in heat-treated barley leaves: The role of internal alternative electron donors to photosystem II. -BBA-Bioenergetics 1767: 295-305, 2007. Go to original source...
  69. Yamane Y., Kashino Y., Koike H., Satoh K.: Effects of high temperatures on the photosynthetic systems in spinach: Oxygen-evolving activities, fluorescence characteristics and the denaturation process. - Photosynth. Res. 57: 51-59, 1998. Go to original source...
  70. Zanetti L.V., Milanez C.R.D., Gama V.N. et al.: Leaf application of silicon in young cacao plants subjected to water deficit. - Pesqui. Agropecu. Bras. 51: 215-223, 2016. Go to original source...
  71. Zhang C., Moutinho-Pereira J.M., Correia C. et al.: Foliar application of Sili-K® increases chestnut (Castanea spp.) growth and photosynthesis, simultaneously increasing susceptibility to water deficit. - Plant Soil 365: 211-225, 2013. Go to original source...
  72. Zheng G., Tian B., Zhang F. et al.: Plant adaptation to frequent alterations between high and low temperatures: Remodeling of membrane lipids and maintenance of unsaturation levels. - Plant Cell. Environ. 34: 1431-1442, 2011. Go to original source...
  73. Zhori A., Meco M., Brandl H., Bachofen R.: In situ chlorophyll fluorescence kinetics as a tool to quantify effects on photosynthesis in Euphorbia cyparissias by a parasitic infection of the rust fungus Uromyces pisi. - BMC Res. Notes 8: 698, 2015. Go to original source...
  74. Živčák M., Brestič M., Olšovská K., Slamka P.: Performance index as a sensitive indicator of water stress in Triticum aestivum L. - Plant Soil Environ. 54: 133-139, 2008.