Photosynthetica, 2017 (vol. 55), issue 2
Photosynthetica 2017, 55(2):360-367 | DOI: 10.1007/s11099-016-0227-5
Light quality modifies the expression of photosynthetic genes in maize seedlings
- 1 College of Crop Sciences, Fujian Agriculture and Forestry University, Fujian, Fuzhou, China
- 2 College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University, Fujian, Fuzhou, China
- 3 Center of Excellence for Research in Optoelectronic Agriculture, Fujian Agriculture and Forestry University, Fujian, Fuzhou, China
- 4 Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Jilin, Changchun, China
Although maize (Zea mays L.) plants utilize light efficiently, the expression of high light-efficient genes and stomatal factors is regulated by light conditions and affects photosynthesis of plants. In this study, we investigated the effects of different light qualities on the expression of the photosynthetic genes, such as pep1, pdk1, ZmSTOMAGEN, and psad1, and on stomatal function in maize seedlings. For both maize genotypes, Zhengdan 958 and Xianyu 335, light with wavelengths shorter than 490 nm enhanced the expression of pdk1 and ZmSTOMAGEN, whereas the expression of pdk1 positively correlated with ZmSTOMAGEN. Light with wavelengths longer than 630 nm or shorter than 490 nm (band pass filter) increased the expression of pep1 and psad1. Although the expression of four genes in Zhengdan 958 was significantly higher than that of Xianyu 335, changes in the expression of ZmSTOMAGEN, pdk1, or pep1 exerted no significant influence on stomatal function and photosynthetic rate. Our results suggest that light with wavelengths shorter than 490 nm promoted the expression of stomatal proteins and pdk1, facilitated the absorption of inorganic elements, and contributed to stomatal function in photosynthesis. Meanwhile, light with wavelengths longer than 630 nm inhibited the expression of pep1 and pdk1. Light with wavelengths longer than 630 nm or shorter than 490 nm promoted the expression of pep1, pdk1, and psad1.
Keywords: gas exchange; pdk1; pep1; phosphoenolpyruvate carboxylase; psad1; stomata
Received: December 15, 2015; Accepted: March 23, 2016; Published: June 1, 2017Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Ahmad M., Cashmore A.R.: Hy4 gene of A. Thaliana encodes a protein with characteristics of a blue-light photoreceptor. - Nature 366: 162-166, 1993. Go to original source...
- Arnon D.I.: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. - Plant Physiol. 24: 1-15, 1949. Go to original source...
- Boccalandro H.E., Rugnone M.L., Moreno J.E. et al.: Phytochrome B enhances photosynthesis at the expense of water-use efficiency in Arabidopsis. - Plant Physiol. 150: 1083-1092, 2009. Go to original source...
- Casal J.J., Boccalandro H.: Co-action between phytochrome B and Hy4 in Arabidopsis thaliana. - Planta 197: 213-218, 1995. Go to original source...
- Casson S.A., Hetherington A.M.: Environmental regulation of stomatal development. - Curr. Opin. Plant Biol. 13: 90-95, 2010. Go to original source...
- Chastain C.J.: Chapter 15: Structure, function, and posttranslational regulation of C4 pyruvate orthophosphate dikinase. - In: Agepati S.R., Rowan F.S. (ed.): C4 Photosynthesis and Related CO2 Concentrating Mechanisms. Pp. 301-315. Springer, Heidelberg 2011. Go to original source...
- Chollet R., Vidal J., O'Leary M.H.: Phosphoenolpyruvate carboxylase: a ubiquitous, highly regulated enzyme in plants. - Annu. Rev. Plant Physiol. 47: 273-298, 1996. Go to original source...
- Cousins A.B., Baroli I., Badger M.R. et al.: The role of phosphoenolpyruvate carboxylase during C4 photosynthetic isotope exchange and stomatal conductance. - Plant Physiol. 145: 1006-1017, 2007. Go to original source...
- Davies D.D.: The central role of phosphoenolpyruvate in plant metabolism. - Annu. Rev. Plant Physiol. 30: 131-158, 1979. Go to original source...
- Davies D.D.: Anaerobic metabolism and production of organic acids. - Biochem. Plant 2: 581-611, 1980. Go to original source...
- Duke S.O., Fox S.B., Naylor A.W.: Photosynthetic independence of light-induced anthocyanin formation in Zea seedlings. - Plant Physiol. 57: 192-196, 1976. Go to original source...
- Edwards G.E., Nakamoto H., Burnell J.N. et al.: Pyruvate, Pi dikinase and NADP-malate dehydrogenase in C4 photosynthesis: Properties and mechanism of light/dark regulation. - Annu. Rev. Plant Physiol. 36: 255-286, 1985. Go to original source...
- Galen C., Rabenold J.J., Liscum E.: Functional ecology of a blue light photoreceptor: effects of phototropin-1 on root growth enhance drought tolerance in Arabidopsis thaliana. - New Phytol. 173: 91-99, 2007. Go to original source...
- Hald S., Pribil M., Leister D. et al.: Competition between linear and cyclic electron flow in plants deficient in Photosystem I. - BBA-Bioenergetics 1777: 1173-1183, 2008. Go to original source...
- Hatch M.D., Slack C.R.: A new enzyme for the interconversion of pyruvate and phosphopyruvate and its role in the C4 dicarboxylic acid pathway of photosynthesis. - Biochem. J. 106: 141-146, 1968. Go to original source...
- Huang D., Wu L., Chen J.R. et al.: Morphological plasticity, photosynthesis and chlorophyll fluorescence of Athyrium pachyphlebium at different shade levels. - Photosynthetica 49: 611-618, 2011. Go to original source...
- Ivanova L.A., Ivanov L., Ronzhina D.A. et al.: Shading-induced changes in the leaf mesophyll of plants of different functional types. - Russ. J. Plant Physl.+ 55: 211-219, 2008.
- Jackson J.A., Jenkins G.I.: Extension-growth responses and expression of flavonoid biosynthesis genes in the Arabidopsis Hy4 Mutant. - Planta 197: 233-239, 1995. Go to original source...
- Jiang C.D., Wang X., Gao H.Y. et al.: Systemic regulation of leaf anatomical structure, photosynthetic performance, and highlight tolerance in Sorghum. - Plant Physiol. 155: 1416-1424, 2011. Go to original source...
- Kim S.J., Hahn E.J., Heo J.W. et al.: Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. - Sci. Hortic.-Amsterdam 101:143-151, 2004.
- Kinoshita T., Doi M., Suetsugu N. et. al.: Phot1 and phot2 mediate blue light regulation of stomatal opening. - Nature 414: 656-660, 2001. Go to original source...
- Ku M.S., Agarie S., Nomura M. et al.: High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. - Nat. Biotechnol. 17: 76-80, 1999. Go to original source...
- Lampard G.R., Lukowitz W., Ellis B.E. et al.: Novel and expanded roles for MAPK signaling in Arabidopsis stomatal cell fate revealed by cell type-specific manipulations. - Plant Cell 21: 3506-3517, 2009. Go to original source...
- Lichtenthaler H.K., Buschmann C., Döll M. et al.: Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves. - Photosynth. Res. 2: 115-141, 1981. Go to original source...
- Liu J., Wang B.S., Xie X.Z.: [Regulation of stomatal development in plants.] - Hereditas 33: 131-137, 2011. [In Chinese] Go to original source...
- Lotan O., Cohen Y., Michaeli D. et al.: High levels of photosystem I subunit II (PsaD) mRNA result in the accumulation of the PsaD polypeptide only in the presence of light. - J. Biol. Chem. 268: 16185-16189, 1993.
- Nadeau J.A., Sack F.D.: Stomatal development in Arabidopsis. - In: Someville C., Meyerowitz E. (ed.): The Arabidopsis Book. Pp. 294-299. American Soc. Plant Biol., Rockville 2002. Go to original source...
- Niinemets Ü.: A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. - Ecol. Res. 25: 693-714, 2010. Go to original source...
- Okamoto M., Tanaka Y., Abrams S.R. et al.: High humidity induces abscisic acid 8'-hydroxylase in stomata and vasculature to regulate local and systemic abscisic acid responses in Arabidopsis. - Plant Physiol. 149: 825-834, 2009. Go to original source...
- Pohl P., Stecha H., Jamroz P.: Solid phase extraction with flame atomic absorption spectrometry for determination of traces of Ca, K, Mg and Na in quality control of white sugar. - Food Chem. 130: 441-446, 2012 Go to original source...
- Robson P.R.H., Smith H.: Genetic and transgenic evidence that phytochromes A and B act to modulate the gravitropic orientation of Arabidopsis thaliana hypocotyls. - Plant Physiol. 110: 211-216, 1996. Go to original source...
- Ruszala E.M., Beerling D.J., Franks R.J. et al.: Land plants acquired active stomatal control early in their evolutionary history. - Curr. Biol. 21: 1030-1035, 2011. Go to original source...
- Schnabl H., Denecke M., Schulz M.: In vitro and in vivo phosphorylation of stomatal phosphoenolpyruvate carboxylase from Vicia faba L. - Bot. Acta 105: 367-369, 1992 Go to original source...
- Schoch P.G., Zinsou C., Sibi M.: Dependence of the stomatal index on environmental factors during stomatal differentiation in leaves of Vigna sinensis L.:1. Effect of light intensity. - J. Exp. Bot. 31: 1211-1216, 1980. Go to original source...
- Shimazaki K., Doi M., Assmann S.M. et al.: Light regulation of stomatal movement. - Annu. Rev. Plant Biol. 58: 219-247, 2007. Go to original source...
- Shinomura T., Nagatani A., Chory J. et al.: The induction of seed germination in Arabidopsis thaliana is regulated principally by phytochrome B and secondarily by phytochrome A. - Plant Physiol. 104: 363-371, 1994. Go to original source...
- Tanaka Y., Sugano S.S., Shimada T. et al.: Enhancement of leaf photosynthetic capacity through increased stomatal density in Arabidopsis. - New Phytol. 198: 757-764, 2013. Go to original source...
- Taylor L., Nunes-Nesi A., Parsley K. et al.: Cytosolic pyruvate, orthophosphate dikinase functions in nitrogen remobilization during leaf senescence and limits individual seed growth and nitrogen content. - Plant J. 62: 641-652, 2010. Go to original source...
- Thomas P.W., Woodward I., Quick W.R.: Systemic irradiance signalling in tobacco. - New Phytol. 161: 193-198, 2004. Go to original source...
- Turner N.C., Graniti A.: Fusicoccin: a fungal toxin that opens stomata. - Nature 223:1070-1071, 1969. Go to original source...
- Wada M., Kagawa T., Sato Y.: Chloroplast movement. - Annu. Rev. Plant Biol. 54: 455-468, 2003. Go to original source...
- Wang Z.M., Li H.X., HE Y. et al.: Advances in plant pyruvate, orthophosphate dikinase. - Plant Physiol. J. 48: 949-957, 2012.
- Whippo C.W., Hangarter R.P.: Second positive phototropism results from coordinated co-action of the phototropins and cryptochromes. - Plant Physiol. 132: 1499-1507, 2003. Go to original source...
- Ueoka-Nakanishi H., Yamashino T., Ishida K. et al.: Molecular mechanisms of circadian rhythm in Lotus japonicus and Arabidopsis thaliana are sufficiently compatible to regulate heterologous core clock genes robustly. - Biosci. Biotech. Bioch. 76: 2332-2334, 2012. Go to original source...
- Xie X.D., Wang Y.B., Williamson L. et al.: The identification of genes involved in the stomatal response to reduced atmospheric relative humidity. - Curr. Biol. 16: 882-887, 2006. Go to original source...
- Yamazaki J., Shinomiya Y.: Effect of partial shading on the photosynthetic apparatus and photosystem stoichiometry in sunflower leaves. - Photosynthetica 51: 3-12, 2013. Go to original source...
- Yu J.: Cryptochrome effect on mineral element absorption. - MSc. Thesis, Hunan University, Changsha 2009
- Yuan L.M., Wang P., Wang Z.Q. et al.: Structure characteristics of stomata in leaves and vascular bundles in culms of transgenic rice expressing C4 photosynthesis enzymes. - Sci Agri. Sinica 39: 902-909, 2006. [In Chinese]
- Zhang H.F., Xu W.G., Wang H.W. et al.: Pyramiding expression of maize genes encoding phosphoenolpyruvate carboxylase (PEPC) and pyruvate orthophosphate dikinase (PPDK) synergistically improve the photosynthetic characteristics of transgenic wheat. - Protoplasma 251: 1163-1173, 2014. Go to original source...
- Zhang X.Z.: [Study Method of Crop Physiology.] Pp. 211-212. Agricult. Press, Beijing 1992. [In Chinese]