Photosynthetica, 2017 (vol. 55), issue 2

Photosynthetica 2017, 55(2):386-390 | DOI: 10.1007/s11099-016-0656-1

Benzoxazolin-2-(3H)-one reduces photosynthetic activity and chlorophyll fluorescence in soybean

A. V. Parizotto1, R. Marchiosi1, G. A. Bubna1, J. M. Bevilaqua1, A. P. Ferro1, M. L. L. Ferrarese1, O. Ferrarese-Filho1,*
1 Laboratory of Plant Biochemistry, Department of Biochemistry, University of Maringá, Maringá, Brazil

Benzoxazolin-2-(3H)-one (BOA) has been tested in many plants species, but not in soybean (Glycine max). Thus, a hydroponic experiment was conducted to assess the effects of BOA on soybean photosynthesis. BOA reduced net photosynthetic rate, stomatal conductance, and effective quantum yield of PSII photochemistry without affecting intercellular CO2 concentration or maximal quantum yield of PSII photochemistry. Results revealed that the reduced stomatal conductance restricted entry of CO2 into substomatal spaces, thus limiting CO2 assimilation. No change found in intercellular CO2 concentration and reduced effective quantum yield of PSII photochemistry revealed that CO2 was not efficiently consumed by the plants. Our data indicated that the effects of BOA on soybean photosynthesis occurred due to the reduced stomatal conductance and decreased efficiency of carbon assimilation. The accumulation of BOA in soybean leaves reinforced these findings.

Keywords: allelochemical; benzoxazolinone; gas exchange; nonstomatal limitation; stomatal limitation

Received: April 6, 2016; Accepted: July 15, 2016; Published: June 1, 2017Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Parizotto, A.V., Marchiosi, R., Bubna, G.A., Bevilaqua, J.M., Ferro, A.P., Ferrarese, M.L.L., & Ferrarese-Filho, O. (2017). Benzoxazolin-2-(3H)-one reduces photosynthetic activity and chlorophyll fluorescence in soybean. Photosynthetica55(2), 386-390. doi: 10.1007/s11099-016-0656-1.
Download citation

References

  1. Ashraf M., Harris P.J.C.: Photosynthesis under stressful environments: An overview. - Photosynthetica 51: 163-190, 2013. Go to original source...
  2. Baker N.R., Harbinson J., Kramer D.M.: Determining the limitations and regulation of photosynthetic energy transduction in leaves. - Plant Cell Environ. 30: 1107-1125, 2007. Go to original source...
  3. Batish D.R., Singh H.P., Setia N. et al.: 2-Benzoxazolinone (BOA) induced oxidative stress, lipid peroxidation and changes in some antioxidant enzymes activities in mung bean (Phaseolus aureus). - Plant Physiol. Bioch. 44: 819-827, 2006. Go to original source...
  4. Burgos N.R., Talbert R.E., Mattice J.D.: Cultivar and age differences in the production of allelochemicals by Secale cereale. - Weed Sci. 47: 481-485, 1999. Go to original source...
  5. Centritto M., Loreto F., Chartzoulakis K.: The use of low [CO2] to estimate diffusional and non-diffusional limitations of photosynthetic capacity of salt-stressed olive saplings. - Plant Cell Environ. 26: 585-594, 2003. Go to original source...
  6. Demmig-Adams B., Adams W.W., Barker D.H. et al.: Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. - Plant Physiol. 98: 253-264, 1996. Go to original source...
  7. Dhima K., Vasilakoglou I.B., Eleftherohorinos I.G. et al.: Allelopathic potencial of winter cereal cover crop mulches on grass weed suppression and sugarbeet development. - Crop Sci. 46: 1682-1691, 2006. Go to original source...
  8. Dong J., Wu F., Zhang G.: Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum). - Chemosphere 64: 1659-1666, 2006. Go to original source...
  9. Farquhar G.D., Sharkey T.D.: Stomatal conductance and photosynthesis. - Annu. Rev. Plant Physiol. 33: 317-345, 1982. Go to original source...
  10. Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. - Biochim. Biophys. Acta 990: 87-92, 1989. Go to original source...
  11. Hall D.O., Rao K.K.: Photosynthesis, 6th ed. Pp. 160-174. Cambridge University Press, Cambridge 1999.
  12. Hussain M.I., González L., Chiapusio G. et al.: Benzoxazolin-2(3H)-one (BOA) induced changes in leaf water relations, photosynthesis and carbon isotope discrimination in Lactuca sativa. - Plant Physiol. Bioch. 49: 825-834, 2011. Go to original source...
  13. Hussain M.I., Reigosa M.J.: A chlorophyll fluorescence analysis of photosynthetic efficiency, quantum yield and photon energy dissipation in PSII antennae of Lactuca sativa L. leaves exposed to cinnamic acid. - Plant Physiol. Biochem. 49: 1290-1298, 2011b. Go to original source...
  14. Hussain M.I., Reigosa M.J.: Allelochemical stress inhibits growth, leaf water relations, PSII photochemistry, nonphotochemical fluorescence quenching, and heat energy dissipation in three C3 perennial species. - J. Exp. Bot. 62: 4533-4545, 2011a. Go to original source...
  15. Chiapusio G., Pellissier F., Gallet C.: Uptake and translocation of phytochemical 2-benzoxazolinone (BOA) in radish seeds and seedlings. - J. Exp. Bot. 55: 1587-1592, 2004. Go to original source...
  16. Krause G.H., Wies E.: Chlorophyll fluorescence as a tool in plant physiology. II. Interpretation of fluorescence signals. - Photosynth. Res. 5: 139-157, 1984. Go to original source...
  17. Loreto F., Centritto M., Chartzoulakis K.: Photosynthetic limitations in olive cultivars with different sensitivity to salt stress. - Plant Cell Environ. 26: 595-601, 2003. Go to original source...
  18. Lu K.X., Cao B.H., Feng X.P. et al.: Photosynthetic response of salt-tolerant and sensitive soybean varieties. - Photosynthetica 47: 381-387, 2009. Go to original source...
  19. Macías F.A., Marín D., Oliveros-Bastidas A. et al.: Structureactivity relationships (SAR) studies of benzoxazinones, their degradation products and analogues. Phytotoxicity on Standard Target Species (STS). - J. Agric. Food Chem. 53: 538-548, 2005. Go to original source...
  20. Macías F.A., Marín D., Oliveros-Batidas A. et al.: Rediscovering the bioactivity and ecological role of 1,4-benzoxazinones. - Nat. Prod. Rep. 26: 478-489, 2009. Go to original source...
  21. Macías F.A., Molinillo J.M.G., Varela R.M. et al.: Allelopathy-a natural alternative for weed control. - Pest Manage. Sci. 63: 327-348, 2007.
  22. Rice C.P., Cai G., Teasdale J.R.: Concentration and allelopathic effect of benzoxazinoid compounds in soil treated with rye (Secale cereale) cover crop. - J. Agric. Food Chem. 60: 4471-4479, 2012. Go to original source...
  23. Sánchez-Moreiras A.M., Martínez-Peñalver A., Reigosa M.J.: Early senescence induced by 2-3H-benzoxazolinone (BOA) in Arabidopsis thaliana. - J. Plant Physiol. 168: 863-870, 2011. Go to original source...
  24. Sánchez-Moreiras A.M., Oliveros-Bastidas A., Reigosa M.J.: Reduced photosynthetic activity is directly correlated with 2-(3H)-benzoxazolinone accumulation in lettuce leaves. - J. Chem. Ecol. 36: 205-209, 2010. Go to original source...
  25. Sánchez-Moreiras A.M., Reigosa M.J.: Whole plant response of lettuce after root exposure to BOA (2(3H)-benzoxazolinone). - J. Chem. Ecol. 31: 2689-2703, 2005. Go to original source...
  26. Ye S.F., Yu J.Q., Peng Y.H. et al.: Incidence of Fusarium wilt in Cucumis sativus L. is promoted by cinnamic acid, an autotoxin in root exudates. - Plant Soil 263: 143-150, 2004. Go to original source...
  27. Zhou Y.H., Yu J.Q.: Allelochemicals and photosynthesis. - In: Reigosa M.J., Pedrol N., González L. (ed.): Allelopathy: A Physiological Process with Ecological Implications. Pp. 127-139. Springer, Dordrecht 2006. Go to original source...