Photosynthetica, 2011 (vol. 49), issue 1

Photosynthetica 2011, 49(1):112 | DOI: 10.1007/s11099-011-0016-0

A comparative analysis of photosynthetic characteristics of hulless barley at two altitudes on the Tibetan Plateau

Y. Z. Fan1, Z. M. Zhong1, X. Z. Zhang1,*
1 Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China

To determine the photosynthetic characteristics of C3 plants and their sensitivity to CO2 at different altitudes on the Tibetan Plateau, hulless barley (Hordeum vulgare L. ssp. vulgare) was grown at altitudes of 4,333 m and 3,688 m. Using gas-exchange measurements, photosynthetic parameters were simulated, including the maximum net photosynthesis (P max) and the apparent quantum efficiency (α). Plants growing at higher altitude had higher net photosynthetic rates (P N), photosynthesis parameters (P max and α) and sensitivities to CO2 enhancement than plants growing at lower altitude on the Tibetan Plateau. The enhancements of P N, P max, and α for plants growing at higher altitude, corresponding with 10 μmol(CO2) mol-1 increments, were approximately 0.20∼0.45%, 0.05∼0.20% and 0.12∼0.36% greater, respectively, than for plants growing at lower altitude, respectively, where CO2 levels rose from 10 to 170 μmol(CO2) mol-1. Therefore, on the Tibetan Plateau, the changes in the photosynthetic capacities and the photosynthetic sensitivities to CO2 observed in the C3 plants grown above 3,688 m are likely to increase with altitude despite the decreasing CO2 partial pressure.

Keywords: altitude; apparent quantum efficiency; maximum net photosynthesis; Tibetan Plateau

Received: September 19, 2010; Accepted: January 24, 2011; Published: March 1, 2011Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Fan, Y.Z., Zhong, Z.M., & Zhang, X.Z. (2011). A comparative analysis of photosynthetic characteristics of hulless barley at two altitudes on the Tibetan Plateau. Photosynthetica49(1), 112. doi: 10.1007/s11099-011-0016-0.
Download citation

References

  1. Akhkha, A., Reid, I., Clarke, D.D., Dominy, P.: Photosynthetic light response curves determined with the leaf oxygen electrode: minimisation of errors and significance of the convexity term. - Planta 214: 135-141, 2001. Go to original source...
  2. Badger, M.: Photosynthetic oxygen exchange. - Annu. Rev. Plant Physiol. 36: 27-53, 1985. Go to original source...
  3. Barigah, T.S., Saugier, B., Mousseau, M., Guittet, J., Ceulemans, R.: Photosynthesis, leaf area and productivity of 5 poplar clones during their establishment year. - Ann. Sci. Forest 51: 613-625, 1994. Go to original source...
  4. Berry, J., Björkman, O.: Photosynthetic response and adaptation to temperature in higher plants. - Annu. Rev. Plant Physiol. 31: 491-543, 1980. Go to original source...
  5. Billings, W.D., Mooney H.A.: The ecology of arctic and alpine plants. - Biol. Rev. 43: 481-529, 1968. Go to original source...
  6. Brooks, A., Farquhar, G.D.: Effect of temperature on the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light. Estimates from gas-exchange measurements on spinach. - Planta 165:397-406, 1985. Go to original source...
  7. Cabrera, H.M., Rada, F., Cavieres, L.: Effects of temperature on photosynthesis of two morphologically contrasting plant species along an altitudinal gradient in the tropical high Andes. - Oecologia 114: 145-152, 1998. Go to original source...
  8. Cannon, W.N., Jr., Roberts, B.R.: Stomatal resistance and the ratio of intercellular to ambient carbon dioxide in container-grown yellow-poplar seedlings exposed to chronic ozone fumigation and water stress. - Environ. Exp. Bot. 35: 161-165, 1995. Go to original source...
  9. Castrillo, M.: Photosynthesis in three altitudinal populations of the Andean plant Espeletia schultzii (Compositae). - Rev. Biol. Trop. 54: 1143, 2006. Go to original source...
  10. Dillaway, D.N.: Thermal acclimation of metabolism and its consequences for plant carbon balance: A comparison of boreal and temperature tree species along a latitudinal transect. - Ph.D. dissertation, Univ. Wisconsin, Madison 2009.
  11. Farquhar, G.D., von Caemmerer, S., Berry, J.A.: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. - Planta 149: 78-90, 1980. Go to original source...
  12. Friend, A.D., Woodward, F. I.: Evolutionary and ecophysiological responses of mountain plants to the growing season environment. - Adv. Ecol. Res. 20: 59-124, 1990. Go to original source...
  13. Fryer, J., Ledig, F.: Microevolution of the photosynthetic temperature optimum in relation to the elevational complex gradient. - Can. J. Botany 50: 1231-1235, 1972. Go to original source...
  14. Gale, J.: Availability of carbon dioxide for photosynthesis at high altitudes: theoretical considerations. - Ecology 53: 494-497, 1972. Go to original source...
  15. Goudriaan, J., van Laar, H.H., van Keulen, H., Louwerse, W.: Photosynthesis, CO2 and plant production. - In: Day, W., Atkin, R.K. (ed.): Wheat Growth and Modeling. Pp.107-122. Plenum Press, New York1985. Go to original source...
  16. Heber, U., Walker, D: Concerning a dual function of coupled cyclic electron transport in leaves. - Plant Physiol. 100: 1621-1626, 1992. Go to original source...
  17. Kao, W.Y., Chang, K.W.: Altitudinal trends in photosynthetic rate and leaf characteristics of Miscanthus populations from central Taiwan. - Aust. J. Bot. 49: 509-514, 2001. Go to original source...
  18. Körner, C.: Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. - Springer, New York - Berlin - Heidelberg 2003.
  19. Körner, C.: The use of 'altitude' in ecological research. - Trends Ecol. Evol. 22: 569-574, 2007. Go to original source...
  20. Körner, C., Bannister, P., Mark, A.F.: Altitudinal variation in stomatal conductance, nitrogen content and leaf anatomy in different plant life forms in New Zealand. - Oecologia 69: 577-588, 1986. Go to original source...
  21. Körner, C., Diemer, M.: In situ photosynthetic responses to light, temperature and carbon dioxide in herbaceous plants from low and high altitude. - Funct. Ecol. 1: 179-194, 1987. Go to original source...
  22. Körner, C., Neumayer, M., Menendez-Riedl, S.P., Smeets-Scheel, A.: Functional morphology of moutain plants. - Flora 182: 353-383, 1989.
  23. Körner, C., Pelaez Menendez-Riedl, S.: The significance of developmental aspects in plant growth analysis. - In: Lambers, H., Cambridge, H., Konings, H., Pons, T.L. (ed.): Causes and Consequences of Variation in Growth Rate and Productivity of Higher Plants. Pp. 141-157. SPB Academic Publish., The Hague 1990.
  24. Li, C.Q., Tang, M.C.: [The climate change of Qinghai-Tibetan plateau and its neighborhood in recent 30 years.] - Plateau Meteorol. 4: 332-341, 1988. [In Chin.]
  25. Lindroth, A., Grelle, A., Moren, A.S.: Long-term measurements of boreal forest carbon balance reveal large temperature sensitivity. - Global Change Biol. 4: 443-450, 1998. Go to original source...
  26. Liu, Y.F., Zhang, X.Z., Zhang, Y.G, Zhou, Y.H.: [Apparent quantum yield of photosynthesis of winter wheat in the field in Tibet Plateau.] - Acta Phytoecol. Sin. 20: 35-38, 2000. [In Chin.]
  27. Marshall, B., Biscoe, P.V.: A model for C3 leaves describing the dependence of net photosynthesis on irradiance. I. Derivation. - J. Exp. Bot. 31: 29-39, 1980. Go to original source...
  28. McMichael, A.J., Campbell-Lendrum, D., Edwards, S., Wilkinson, P., Wilson, T., Nicholls, R., Hales, S., Tanser, F., Sueur, D.L., Schlesinger, M., Andronova, N.: Comparative quantification of health risks: global and regional burden of disease due to selected major risk factors.- In: Ezzati, M., Lopez, A.D., Rodgers, A., Murray, C.J.L. (ed.): Global Climate Change. Pp. 1543-1649. World Health Org., Geneva 2004.
  29. Morecroft, M.D., Woodward, F.I.: Experiments on the causes of altitudinal differences in the leaf nutrient contents, size and δ13C of Alchemilla alpina. - New Phytol. 134: 471-479, 1996. Go to original source...
  30. Moreno-Sotomayor, A., Weiss, A., Paparozzi, E.T., Arkebauer, T.J.: Stability of leaf anatomy and light response curves of field grown maize as a function of age and nitrogen status. - J. Plant Physiol. 159: 819-826, 2002. Go to original source...
  31. Oguchi, R., Hikosaka, K., Hirose, T.: Does the photosynthetic light-acclimation need change in leaf anatomy? - Plant Cell Environ. 26: 505-512, 2003. Go to original source...
  32. Pons, T.L., Anten, N.P.R.: Is plasticity in partitioning of photosynthetic resources between and within leaves important for whole-plant carbon gain in canopies? - Funct. Ecol. 18: 802-811, 2004. Go to original source...
  33. Pyankov, V.I., Kondratchuk, A.V., Shipley, B.: Leaf structure and specific leaf mass: the alpine desert plants of the Eastern Pamirs, Tadjikistan. - New Phytologist 143: 131-142, 1999. Go to original source...
  34. Rada, F., Briceño B., Azócar, A.: How do two Lupinus species respond to temperature along an altitudinal gradient in the Venezuelan Andes? - Rev. Chil. Historia Natur. 81: 335-343, 2008. Go to original source...
  35. Sakata, T., Yokoi, Y.: Analysis of the O2 dependency in leaf-level photosynthesis of two Reynoutria japonica populations growing at different altitudes. - Plant Cell Environ. 25: 65-74, 2002. Go to original source...
  36. Shi, P.L., Zhang, X.Z., Zhong, Z.M.: [Apparent photon yield of winter wheat and response to temperature and intercellular carbon dioxide concentration under low atmospheric pressure on Tibetan Plateau.] - Sci. China Ser. D 34: 161-166, 2004. [In Chin.]
  37. Shi, P.L., Zhang, X.Z., Zhong, Z.M., Ouyang, H.: Diurnal and seasonal variability of soil CO2 efflux in a cropland ecosystem on the Tibetan Plateau. - Agr. Forest Meteorol. 137: 220-233, 2006. Go to original source...
  38. Terashima, I., Masuzawa, T., Ohba, H., Yokoi, Y.: Is photosynthesis suppressed at higher elevations due to low CO2 pressure? - Ecology 76: 2663-2668, 1995. Go to original source...
  39. Tranquillini, W.: The physiology of plants at high altitudes. - Ann. Rev. Plant Physiol. 15: 345-362, 1964. Go to original source...
  40. Tranquillini, W., Havranek, W.M., Ecker, P.: Effects of atmospheric humidity and acclimation temperature on the temperature response of photosynthesis in young Larix decidua Mill. - Tree Physiol. 1: 37-45, 1986. Go to original source...
  41. Vats, S.K., Kumar, N., Kumar, S.: Gas exchange of response of barley and pea cultivars to altitude variation in Himalaya. - Photosynthetica 47: 41-45, 2009. Go to original source...
  42. Weber, J.A., Jurik, T.W., Tenhunen, J.D., Gates, D.M.: Analysis of gas exchange in seedlings of Acer saccharum: integration of field and laboratory studies. - Oecologia 65: 338-347, 1985. Go to original source...
  43. Xu, L.L., Zhang, X.Z., Shi, P.L., Li, W.H., He, Y.T.: Modeling the maximum apparent quantum use efficiency of alpine meadow ecosystem on Tibetan Plateau. - Ecol. Model. 208: 129-134, 2007. Go to original source...
  44. Zhang, S.B., Zhou, Z.K., Hu, H., Xu, K., Yan, N., Li, S.Y.: Photosynthetic performances of Quercus pannosa vary with altitude in the Hengduan Mountains, southwest China. - Forest Ecol. Manag. 212: 291-301, 2005. Go to original source...
  45. Zhang, S.Y., Lu, G.Q., Wu, H., Shen, Z.X., Zhong, H.M., Shen, Y.G., Xu, D.Q., Ding, H.G., Hu, W.X.: [Photosynthesis of major C3 plants on Qinghai Plateau.] - Acta Bot. Sin. 34: 176-184, 1992. [in Chin.]
  46. Zhou, H.H, Chen, Y.N., Li, W.H., Chen, Y.P.: Photosynthesis of Populus euphratica in relation to groundwater depths and high temperature in arid environment, northwest China. - Photosynthetica 48: 257-268, 2010. Go to original source...