Photosynthetica, 2016 (vol. 54), issue 3

Photosynthetica 2016, 54(3):405-413 | DOI: 10.1007/s11099-015-0182-6

Structural and functional organization of the photosynthetic apparatus in halophytes with different strategies of salt tolerance

O. A. Rozentsvet1, E. S. Bogdanova1, L. A. Ivanova2, L. A. Ivanov2, G. N. Tabalenkova3, I. G. Zakhozhiy3, V. N. Nesterov1,*
1 Institute of Ecology of the Volga River Basin, Russian Academy of Sciences, Togliatti, Russia
2 Botanical Garden, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
3 Institute of Biology, Komi Science Centre, Russian Academy of Sciences, Syktyvkar, Russia

The specific features of the structural and functional organisation of the photosynthetic apparatus (PSA) were studied in wild halophytes representing three strategies of salt tolerance: euhalophyte Salicornia perennans, crynohalophyte Limonium gmelinii, and glycohalophyte Artemisia santonica. The sodium content in aboveground parts of the plants corresponded to the strategy of salt tolerance. The photosynthetic cells of the euhalophyte were large and contained a higher number of chloroplasts than those in other species. In contrast, the number of cells per a leaf area unit was lower in S. perennans as compared to cryno- and glycohalophytes. Thereupon, the cell and chloroplast surface area per leaf area unit declined in the following sequence: A. santonica > L. gmelinii > S. perennans. However, the large cells of euhalophyte contained chloroplasts of larger sizes with 4- to 5-fold higher chlorophyll (Chl) content per chloroplast and Chl concentration in chloroplast volume unit. Also, chloroplasts of S. perennans were characterised by the higher content of glyco- and phospholipids. Qualitative composition of fatty acids (FA) in lipids isolated from the chloroplast-enriched fraction was similar in all three species; however, the index of unsaturation of FA was higher in glycohalophyte A. santonica than those in two other species. Under natural condition, PSA of all three halophytes showed high resistance to soil salinity. The results indicated tolerance of PSII to the photodamage in halophytes. The high rate of electron transport through PSII can be important to prevent oxidative damage of PSA in halophytes under strong light and hight temperature in vivo. Thus, the strategy of salt tolerance is provided by both the leaf anatomical structure and the ultrastructure of photosynthetic membranes, which is determined in particular by the specific composition of lipids.

Keywords: chlorophyll fluorescence; mesostructure; photoinhibition; salt stress; water content

Received: July 1, 2015; Accepted: October 23, 2015; Published: September 1, 2016Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Rozentsvet, O.A., Bogdanova, E.S., Ivanova, L.A., Ivanov, L.A., Tabalenkova, G.N., Zakhozhiy, I.G., & Nesterov, V.N. (2016). Structural and functional organization of the photosynthetic apparatus in halophytes with different strategies of salt tolerance. Photosynthetica54(3), 405-413. doi: 10.1007/s11099-015-0182-6.
Download citation

References

  1. Adams III W.W., Zarter C.R., Much K.E. et al.: Energy dissipation and photoinhibition: a continuum of photoprotection.-In: Demmig-Adams B., Adams III W.W., Mattoo A.K. (ed.): Photoprotection, Photoinhibition, Gene Regulation, and Environment. Pp. 49-64. Springer-Verlag, Dordrecht 2006. Go to original source...
  2. Albertsson P-A.: A quantitative model of the domain structure of the photosynthetic membrane.-Trends Plant Sci. 6: 349-358, 2001. Go to original source...
  3. Amiri B., Assareh M.H., Jafari M. et al.: Effect of salinity on growth, ion content and water status of glasswort (Salicornia herbacea L.).-Caspian J. Env. Sci. 8: 79-87, 2010.
  4. Anderson J.M.: Insights in the consequences of grana stacking of thylakoid membranes in vascular plants: a personal perspective.-Aust. J. Plant Physiol. 26: 625-639, 1999. Go to original source...
  5. Aziz I., Gul B., Gulzar S., Khan M.A.: Seasonal variations in plant water status of four desert halophytes from semi-arid region of Karachi.-Pak. J. Bot. 43: 587-594, 2011.
  6. Balnokin Y.V., Kurkova E.B., Myasoedov N.A. et al.: Structural and functional state of thylakoids in a halophyte Suaeda altissima before and after disturbance of salt-water balance by extremely high concentrations of NaCl.-Russ. J. Plant Physl+ 51: 905-912, 2004. Go to original source...
  7. Belugin B.V., Zhestkova I.M., Trofimova M.S.: Affinity of PIPaquaporins to sterol-enriched domains in plasma membrane of the cells of etiolated pea seedlings.-Biochem. Suppl. Ser. A 5: 56-63, 2011. Go to original source...
  8. Bligh E.G., Dyer W.J.: A rapid method of total lipid extraction and purification.-Can. J. Biochem. Phys. 37: 911-917, 1959. Go to original source...
  9. Daraban I.N., Mihali C.V., Turcus V. et al.: Esem and edax observation on leaf and stem epidermal structures (stomata and salt glands) in Limonium gmelinii (Willd.) Kuntze.-Ann. RSCB 18: 123-130, 2013.
  10. Davy A.J., Bishop G.F., Costa C.S.B.: Salicornia L. (Salicornia pusilla J. Woods, S. ramosissima J. Woods, S. europaea L., S. obscura P.W. Ball & Tutin, S. nitens P.W. Ball & Tutin, S. fragilis P.W. Ball & Tutin and S. dolichostachya Moss).-J. Ecol. 89: 681-707, 2001. Go to original source...
  11. Flowers T.J., Colmer T.D.: Salinity tolerance in halophytes.-New Phytol. 179: 945-963, 2008. Go to original source...
  12. Glenn E.P., Brown J.J., Blumwald E.: Salt tolerance and crop potential of halophytes.-Crit. Rev. Plant Sci. 18: 227-255, 1999. Go to original source...
  13. Gorham J.: Mechanisms of salt tolerance in halophytes.-In: Choukr-Allah R., Malcolm C.V., Hamdy A. (ed.): Halophytes and Biosaline Agriculture. Pp. 31-53. Marcel Dekker Inc., New York 1996.
  14. Havaux M.: Carotenoids as membrane stabilizers in chloroplasts.-Trends Plant Sci. 3: 147-151, 1998. Go to original source...
  15. Hirayama O., Mihara M.: Characterization of membrane lipids of higher plants different in salt tolerance.-Agric. Biol. Chem. 51: 3215-3221, 1987.
  16. Hölzl G., Dörman P.: Structure and function of glycoglycerolipids in plants and bacteria.-Prog. Lipid Res. 46: 225-243, 2007. Go to original source...
  17. Ivanov L.A., Ronzhina D.A., Ivanova L.A.: Changes in leaf characteristics as indicator of the alteration of functional types of steppe plants along the aridity gradient.-Russ. J. Plant Physl+ 55: 301-307, 2008.
  18. Ivanov L.A., Ivanova L.A., Ronzhina D.A., Yudina P.K.: Changes in the chlorophyll and carotenoid contents in the leaves of steppe plants along a latitudinal gradient in South Ural-Russ. J. Plant Physl+ 60: 812-820, 2013. Go to original source...
  19. Ivanova A., Nechev J., Stefanov K.: Effect of soil salinity on the lipid composition of halophyte plants from the sand bar of Pomorie.-Gen. Appl. Plant Physiol. 32: 125-131, 2006.
  20. Ivanova L.A., Pyankov V.I.: Structural adaptation of the leaf mesophyll to shading.-Russ. J. Plant Physl+ 49: 419-432, 2002.
  21. Jennings D.H.: Halophytes, succulence and sodium in plants-a unified theory.-New Phytol. 67: 899-911, 1968. Go to original source...
  22. Joyard J., Ferro M., Masselon C. et al.: Chloroplast proteomics highlights the subcellular compartmentation of lipid metabolism.-Prog. Lipid Res. 49: 128-158, 2010. Go to original source...
  23. Lichtenthaler H.K.: Hlorophylls and carotenoids: pigments of photosyntethetic biomembranes.-Methods Enzymol. 148: 350-382, 1987. Go to original source...
  24. Li W., Zhang C., Lu Q. et al.: The combined effect of salt stress and heat shock on proteome profiling in Suaeda salsa.-J. Plant Physiol. 168: 1743-1752, 2011. Go to original source...
  25. Lyons J.M., Weaton T.A., Pratt H.K.: Relationship between the physical natures of mitochondrial membranes.-J. Plant Physiol. 39: 262-268, 1964. Go to original source...
  26. Ma X.-L., Wang Z.-L., Qi Y.-C. et al.: Isolation of S-adenosylmethionine synthetase gene from Suaeda salsa and its differential expression under NaCl stress.-Acta Bot. Sin. 45: 1359-1365, 2003.
  27. Markovskaya E.F., Sergienko L.A., Starodubtceva A.A.: Pigment apparatus of some species of higher plants of coastal zone of arctic tidal seas.-Fund. Res. 1: 160-163, 2012.
  28. Mizusawa N., Wada H.: The role of lipids in photosystem II.-Biochim. Biophys. Acta 1817: 194-208, 2012.
  29. Mokronosov A.T.: [Developmental Aspect of Photosynthesis]. Pp. 196. Nauka, Moscow 1981.
  30. Munns R., Tester M.: Mechanisms of salinity tolerance.-Annu. Rev. Plant Biol. 59: 651-681, 2008. Go to original source...
  31. Parida A.K., Das A.B.: Salt tolerance and salinity effects on plants: a review.-Ecotoxicol. Environ. Safe. 60: 324-349, 2005. Go to original source...
  32. Popova O.F., Slemnev N.N., Popova I.A., Maslova T.G.: Content of pigments of plastids in plants of Gobi and Karakum deserts.-Bot. Zh. SSSR 69: 334-344, 1984.
  33. Ramani B., Zorn H., Papenbrock J.: Quantification and fatty acid profiles of sulfolipids in two halophytes and a glycophyte grown under different salt concentrations.-Z. Naturforsch C 59: 835-842, 2004. Go to original source...
  34. Roohi A., Nazish B., et al.: A critical review on halophytes: salt tolerant plants.-J. Med. Plants Res. 5: 7108-7118, 2011.
  35. Rozentsvet O.A., Nesterov V.N., Sinyutina N.F.: The effect of copper ions on the lipid composition of subcellular membranes in Hydrilla verticillata.-Chemosphere 89: 108-113, 2012. Go to original source...
  36. Rozentsvet O.A., Nesterov V.N.: Bogdanova E.S. Membraneforming lipids of wild halophytes growing under the conditions of Prieltonie of South Russia.-Phytochemistry 105: 37-42, 2014. Go to original source...
  37. Sai Kachout S., Ben Mansoura A., Jaffel K. et al.: The effect of salinity on the growth of the halophyte a Triplex hortensis (Chenopodiaceae).-Appl. Ecol. Environ. Res. 7: 319-332, 2009.
  38. Sato N.: Roles of the acidic lipids sulfoquinovosyl diacylglycerol and phosphatidylglycerol in photosynthesis: their specificity and evolution.-J. Plant Res. 117: 495-505, 2004. Go to original source...
  39. Schreiber U., Armond P.A.: Heat-induced change of chlorophyll fluorescence in isolated chloroplasts and related heat-damage at the pigment level.-Biochim. Biophys. Acta 502: 138-151, 1978. Go to original source...
  40. Sui N., Li M., Li K. et al.: Increase in unsaturated fatty acids in membrane lipids of Suaeda salsa L. enhances protection of photosystem II under high salinity.-Photosynthetica 48: 623-629, 2010. Go to original source...
  41. Ushakova S.A., Kovaleva N.P., Gribovskaya T.V. et al.: Effect of NaCl concentration on productivity and mineral composition of Salicornia europaea as a potential crop for utilization NaCl in LSS.-Adv. Space Res. 36: 1349-1353, 2005. Go to original source...
  42. Vaskovsky V.E., Latyshev N.A.: Modified Jungnickel's reagent for detecting phospholipids and other phosphorus compounds on thin-layer chromatograms.-J. Chromatogr. 115: 246-249, 1975. Go to original source...
  43. Voronkova N.M., Burkovskaya E.V., Bezdeleva T.A., Burundukova O.L.: Morphological and biological features of plants related to their adaptation to coastal habitats.-Russ. J. Ecol. 39: 1-7, 2008.
  44. Yamane Y., Yasuhiro K., Hiroyuki K., Satoh K.: Increases in the fluorescence F0 level and reversible inhibition of photosystem II reaction center by high-temperature treatments in higher plants.-Photosynth. Res. 52: 57-64, 1997. Go to original source...
  45. Yamamoto Y., Kai S., Ohnishi A. et al.: Quality control of PSII: behavior of PSII in the highly crowded grana thylakoid under excessive light.-Plant Cell Physiol. 55: 1206-1215, 2014. Go to original source...