Photosynthetica, 2017 (vol. 55), issue 4

Photosynthetica 2017, 55(4):671-678 | DOI: 10.1007/s11099-017-0690-7

Chlorophyll fluorescence imaging can reflect development of vascular connection in grafting union in some Solanaceae species

C. Penella1, A. Pina2, A. San Bautista3, S. López-Galarza3, Ángeles Calatayud1,*
1 Departamento de Horticultura, Instituto Valenciano de Investigaciones Agrarias (IVIA)., Valencia, Spain
2 Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Zaragoza, Spain
3 Departamento de Producción Vegetal, Universitat Politècnica de València., Valencia, Spain

Graft union development in plants has been studied mainly by destructive methods such as histological studies. The aim of this work was to evaluate whether the chlorophyll fluorescence imaging (CFI) technique is sensitive enough to reflect changes at the cellular level in different Solanaceae grafted plants 30 d after grafting, when both grafted partners were well fused and strong enough in all plant combinations. The pepper cultivar 'Adige' was grafted onto different Capsicum spp. accessions typified with different compatibility degrees; eggplant was grafted on Solanum torvum and pepper homografts as compatible unions; pepper was grafted on S. torvum and on tomato as incompatible unions. 'Adige'/'Adige' and 'Adige'/pepper A25 showed a higher maximum quantum efficiency of PSII associated with higher values of actual quantum efficiency of PSII and photochemical quenching as well as with vascular regeneration across the graft interface. Our results highlighted that CFI changes reflected histological observations in grafted Solanaceae plants.

Keywords: callus; compatibility; graft; pepper; photochemical quenching; vascular connections

Received: September 6, 2016; Accepted: November 25, 2016; Published: December 1, 2017Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Penella, C., Pina, A., Bautista, A., López-Galarza, S., & Calatayud, Á. (2017). Chlorophyll fluorescence imaging can reflect development of vascular connection in grafting union in some Solanaceae species. Photosynthetica55(4), 671-678. doi: 10.1007/s11099-017-0690-7.
Download citation

References

  1. Aloni B., Cohen R., Karni L. et al.: Hormonal signaling in rootstock-scion interactions. - Sci. Hortic.-Amsterdam 127: 119-126, 2010.
  2. Berger S., Benediktyová Z., Matouš K. et al.: Visualization of dynamics of plant-pathogen interaction by novel combination of chlorophyll fluorescence imaging and statistical analysis: differential effects of virulent and avirulent strains of P. syringae and of oxylipins on A. thaliana. - J. Exp.Bot. 58: 797-806, 2007. Go to original source...
  3. Biles C., Martyn R., Wilson H.: Isoenzymes and general proteins from various watermelon cultivars and tissue types. - HortSci. 24: 810-812, 1989.
  4. Bilger W., Björkman O.: Temperature dependence of violaxanthin de-epoxidation and non-photochemical fluorescence quenching in intact leaves of Gossypium hirsutum L. and Malva parviflora L. - Planta 184: 226-234, 1991. Go to original source...
  5. Calatayud Á., Gorbe E., Roca D., Martínez P.F.: Effect of two nutrient solution temperatures on nitrate uptake, nitrate reductase activity, NH4 + concentration and chlorophyll a fluorescence in rose plants. - Environ. Exp. Bot. 64: 65-74, 2008. Go to original source...
  6. Calatayud Á., San Bautista A., Pascual B. et al.: Use of chlorophyll fluorescence imaging as diagnostic technique to predict compatibility in melon graft. - Sci. Hortic.-Amsterdam 149: 13-18, 2013.
  7. Clearwater M.J., Lowe R.G., Hofstee B.J. et al.: Hydraulic conductance and rootstock effects in grafted vines of kiwifruit. - J. Exp. Bot. 55: 1371-1382, 2004. Go to original source...
  8. Deloire A., Hébant C.: Peroxidase activity and lignification at the interface between stock and scion of compatible and incompatible grafts of Capsicum on Lycopersicum. - Ann. Bot.-London 49: 887-891, 1982. Go to original source...
  9. Dhondt S., Vanhaeren H., Van Loo D. et al.: Plant structure visualization by high-resolution X-ray computed tomography. - Trends Plant Sci. 15: 419-422, 2010. Go to original source...
  10. Errea P., Garay L., Marín J.A.: Early detection of graft incompatibility in apricot (Prunus armeniaca) using in vitro techniques. - Physiol. Plantarum 112: 135-141, 2001. Go to original source...
  11. Errea P.: Implications of phenolic compounds in graft incompatibility in fruit tree species. - Sci. Hortic.-Amsterdam 74: 195-205, 1998. Go to original source...
  12. Errea P., Felipe A., Herrero M.: Graft establishment between compatible and incompatible Prunus spp. - J. Exp. Bot. 45: 393-401, 1994. Go to original source...
  13. Fernández-García N., Carvajal M., Olmos E.: Graft union formation in tomato plants: peroxidase and catalase involvement. - Ann. Bot.-London 93: 53-60, 2004a. Go to original source...
  14. Fernández-García N., Martínez V., Carvajal M.: Effect of salinity on growth, mineral composition, and water relations of grafted tomato plants. - J. Plant Nutr. Soil Sci. 167: 616-622, 2004b. Go to original source...
  15. Flaishman M. A., Loginovsky K., Golobowich S., Lev-Yadun S.: Arabidopsis thaliana as a model system for graft union development in homografts and heterografts. - J. Plant Growth Regul. 27: 231-239, 2008. Go to original source...
  16. Genty B., Briantais J.-M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. - Biochem. Biophys. Acta 990: 87-92, 1989. Go to original source...
  17. Goldschmidt E.E.: Plant grafting: new mechanisms, evolutionary implications. - Front. Plant Sci. 5: 727, 2014. Go to original source...
  18. Guidi L., Mori S., Degl'Innocenti E., Pecchia S.: Effects of ozone exposure or fungal pathogen on white lupin leaves as determined by imaging of chlorophyll a fluorescence. - Plant Physiol. Bioch. 45: 851-857, 2007. Go to original source...
  19. Hartmann H., Kester D., Davies F., Geneve R.: Plant Propagation. Principes and Practices, 7th ed. Pp. 849. Prentice Hall, New Jersey 2002.
  20. Hudina M., Orazem P., Jakopic J., Stampar F.: The phenolic content and its involvement in the graft incompatibility process of various pear rootstocks (Pyrus communis L.). - J. Plant Physiol. 171: 76-84, 2014. Go to original source...
  21. Irisarri P., Binczycki P., Errea P. et al: Oxidative stress associated with rootstock-scion interactions in pear/quince combinations during early stages of graft development. - J. Plant Physiol. 176: 25-35, 2015. Go to original source...
  22. Ives L., Brathwaite R., Barclay G. et al.: Graft compatibility of scotch bonnet (Capsicum chinense Jacq) with selected salttolerant solanaceous. - J. Agric. Sci. Technol. 2: 81-92, 2012.
  23. Johkan M., Mitukuri K., Yamasaki S. et al.: Causes of defoliation and low survival rate of grafted sweet pepper plants. - Sci. Hortic.-Amsterdam 119: 103-107, 2009.
  24. Kawaguchi M., Taji A., Backhouse D. et al.: Anatomy and physiology of graft incompatibility in solanaceous plants. - J. Hortic. Sci. Biotech. 83: 581-588, 2008. Go to original source...
  25. Martínez-Ballesta M.C., Alcaraz-López C., Muries B. et al.: Physiological aspects of rootstock-scion interactions.-Sci. Hortic.-Amsterdam 127: 112-118, 2010.
  26. Miguel A., De la Torre F., Baixauli C. et al.: [Grafting of vegetables.] Pp. 63. Ministerio de Agricultura, Pesca y Alimentación y Fundación Rural Caja, Valencia 2007. [In Spanish]
  27. Milien M., Renault-Spilmont A.-S., Cookson S.J. et al.: Visualization of the 3D structure of the graft union of grapevine using X-ray tomography. - Sci. Hortic.-Amsterdam 144: 130-140, 2012.
  28. Mudge K., Janick J., Scofield S., Goldschmidt E. E.: A history of grafting.-In: Janick J. (ed.): Horticultural Reviews, Vol. 35. Pp. 437-494, John Wiley & Sons, New York 2009. Go to original source...
  29. O'Brien T., McCully M.: The Study of Plant Structure: Principles and Selected Methods. Pp. 352. Melburne: Termacarphy. 1981.
  30. Oka Y., Offenbach R., Pivonia S.: Pepper rootstock graft compatibility and response to Meloidogyne javanica and M. incognita. - J. Nematol. 36: 137-141, 2004.
  31. Oquist G., Chow W.S.: On the relationship between the quantum yield of photosystem II electron transport, as determined by chlorophyll fluorescence and the quantum yield of CO2- dependent O2 evolution. - Photosynth. Res. 33: 51-62, 1992. Go to original source...
  32. Orsini F., Sanoubar R., Oztekin G.B. et al.: Improved stomatal regulation and ion partitioning boosts salt tolerance in grafted melon. - Func. Plant Biol. 40: 628-636, 2013.
  33. Osmond C.B.: What is photoinhibition? Some insights from comparisons of shade and sun plants.-In: Baker N.R., Bowyer J.R. (ed.): Photoinhibition of Photosynthesis from Molecular Mechanisms to the Field. Pp. 1-24. Bios Sci. Publ., Oxford 1994.
  34. Otsuka K.: Studies on nutritional physiology of grafted plants, part 2. Rootstocks-scion influences on growth and on ionic accumulation of solanaceous grafts. - Jpn. J. Soil Sci. Plant Nutr. 28: 285-289, 1957.
  35. Oxborough K., Baker N.R.: An instrument capable of imaging chlorophyll a fluorescence from intact leaves at very low irradiance and at cellular and subcellular levels of organization. - Plant Cell Environ. 20: 1473-1483, 1997. Go to original source...
  36. Padgett M., Morrison J.C.: Changes in grape berry exudates during fruit development and their effect on mycelial growth of Botrytis cinerea. - J. Am. Soc. Hortic. Sci. 115: 269-273, 1990. Go to original source...
  37. Penella C., Nebauer S.G., Quiñones A. et.al.: Some rootstocks improve pepper tolerance to mild salinity through ionic regulation. - Plant Sci. 230: 12-22, 2015. Go to original source...
  38. Penella C., Nebauer S.G., Bautista A.S. et al.: Rootstock alleviates PEG-induced water stress in grafted pepper seedlings: Physiological responses. - J. Plant Physiol. 171: 842-851, 2014a. Go to original source...
  39. Penella C., Nebauer S.G., López-Galarza S. et al.: Evaluation of some pepper genotypes as rootstocks in water stress conditions. - Hortic. Sci. 41: 192-200, 2014b. Go to original source...
  40. Penella C., Nebauer S.G., San Bautista A. et al.: Improving Water Stress Resistance of Pepper through Grafting. Abstract in Innovation in Vegetable Grafting for Sustainability. 2nd COST action FA1204 Congress. Pp. 44. Carcavelos 2014c.
  41. Penella C., Nebauer S.G., Lopéz-Galarza S. et al.: Evaluation for salt stress tolerance of pepper genotypes to be used as rootstocks. - J. Food Agric. Environ. 11: 1101-1107, 2013.
  42. Pina A., Errea P., Martens H.J.: Graft union formation and cellto- cell communication via plasmodesmata in compatible and incompatible stem unions of Prunus spp. - Sci. Hortic.- Amsterdam 143: 144-150, 2012. Go to original source...
  43. Pina A., Errea P., Schulz A., Martens H.J.: Cell-to-cell transport through plasmodesmata in tree callus cultures. - Tree Physiol. 29: 809-818, 2009. Go to original source...
  44. Pina A., Errea P.: A review of new advances in mechanism of graft compatibility- incompatibility. - Sci. Hortic.-Amsterdam 106: 1-11, 2005.
  45. Quilliam R.S., Swarbrick P.J., Scholes J.D., Rolfe S.: Imaging photosynthesis in wounded leaves of Arabidopsis thaliana. - J. Exp. Bot. 57: 55-69, 2006. Go to original source...
  46. Rolfe S.A., Scholes J.D.: Chlorophyll fluorescence imaging of plant-pathogen interactions. - Protoplasma 247: 163-175, 2010. Go to original source...
  47. Rouphael Y., Schwarz D., Krumbein A., Colla G.: Impact of grafting on product quality of fruit vegetables. - Sci. Hortic.- Amsterdam 127: 172-179, 2010. Go to original source...
  48. Ruiz J.M., Belakbir A., López-Cantarero I., Romero L.: Leafmacronutrient content and yield in grafted melon plants. A model to evaluate the influence of rootstock genotype. - Sci. Hortic.-Amsterdam 71: 227-234, 1997.
  49. Sánchez-Rodríguez E., Romero L., Ruiz J.M.: Role of grafting in resistance to water stress in tomato plants: ammonia production and assimilation. - J. Plant Growth Regul. 32: 831-842, 2013. Go to original source...
  50. Savvas D., Colla G., Rouphael Y., Schwarz D.: Amelioration of heavy metal and nutrient stress in fruit vegetables by grafting. - Sci. Hortic. 127: 156-161, 2010. Go to original source...
  51. Schöning U., Kollmann R.: Phloem translocation in regenerating in vitro-heterografts of different compatibility. - J. Exp. Bot. 48: 289-295, 1997. Go to original source...
  52. Schreiber U., Schliwa U., Bilger W.: Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. - Photosynth. Res. 10: 51-62, 1986. Go to original source...
  53. Tadeo F.R., Gómez-Cadenas A., Ben-Cheikh W. et al.: Gibberellin-ethylene interaction controls radial expansion in citrus roots. - Planta 202: 370-378, 1997. Go to original source...
  54. Trinchera A., Pandozy G., Rinaldi S. et al.: Graft union formation in artichoke grafting onto wild and cultivated cardoon: an anatomical study. - J. Plant Physiol. 170: 1569-1578, 2013. Go to original source...
  55. Wang Y., Kollmann R.: Vascular differentiation in the graft union of in vitro grafts with different compatibility. - Structural and functional aspects. - J. Plant Physiol. 147: 521-533, 1996. Go to original source...
  56. Yin H., Yan B., Sun J. et al.: Graft-union development: a delicate process that involves cell-cell communication between scion and stock for local auxin accumulation. - J. Exp. Bot. 63: 4219-4232, 2012. Go to original source...