Photosynthetica, 2012 (vol. 50), issue 2

Photosynthetica 2012, 50(2):215-222 | DOI: 10.1007/s11099-012-0011-0

Maize photosynthesis and microclimate within the canopies at grain-filling stage in response to narrow-wide row planting patterns

T. D. Liu1,2, F. B. Song1,2,*
1 Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Jinlin, Changchun, China
2 Graduate University of Chinese Academy of Sciences, Beijing, China

In China, narrow-wide row planting pattern has been advocated for maize (Zea mays L.) production. However, no previous study has clearly elucidated the complexity of factors affecting maize canopy such as the microclimatic factors, and the effect of photosynthesis in narrow-wide row planting pattern. The current study was undertaken to identify the planting patterns that influence microclimatic conditions and photosynthesis of two maize cultivars (Beiyu288 and Xianyu335) grown in three planting patterns: narrow-wide rows of (1) 30 cm + 170 cm (P1, 6.4 plants m-2), and (2) 40 cm + 90 cm (P2, 6.4 plants m-2), and (3) uniform row of 65 cm (CK, conventional row as control, 6.4 plants m-2). Light interception, temperature, relative humidity (RH), CO2 concentration, and leaf photosynthesis within the canopy were measured in each planting treatment at the grain-filling stage. The net photosynthetic rate (P N), intercellular CO2 concentration (C i), stomatal conductance (g s), transpiration rate (E), and temperature of the narrow-wide row exceeded that of the conventional row. The CO2 concentration and RH of the narrow-wide row were lower than CK by 50 cm strata. The narrow-wide row had a more uniform light intercepted at the whole canopy profile. The results of the current study suggest that narrow-wide row-planting pattern has a positive effect on canopy microclimate factors and promotes photosynthesis.

Keywords: maize; microclimate; photosynthesis; planting pattern

Received: June 29, 2011; Accepted: December 28, 2011; Published: June 1, 2012Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Liu, T.D., & Song, F.B. (2012). Maize photosynthesis and microclimate within the canopies at grain-filling stage in response to narrow-wide row planting patterns. Photosynthetica50(2), 215-222. doi: 10.1007/s11099-012-0011-0.
Download citation

References

  1. Agele, S.O., Maraiyesa, I.O., Adeniji, I.A.: Effects of variety and row spacing on radiation interception, partitioning of dry matter and seed set efficiency in late season sunflower (Helianthus annuus L.) in a humid zone of nigeria. - Afr. J. Agr. Res. 2: 80-88, 2007.
  2. Anten, N.P.R.: Optimal photosynthetic characteristics of individual plants in vegetation stands and implications for species coexistence. - Ann. Bot. 95: 495-506, 2005.
  3. Arkebauer, T.J., Walter-Shea, E.A., Mesarch, M.A., Suyker, A.E., Verma, S.B.: Scaling up of CO2 fluxes from leaf to canopy in maize-based agroecosystems. - Agr. Forest Meteorol. 149: 2110-2119, 2009. Go to original source...
  4. Awal, M.A., Koshi, H., Ikeda, T.: Radiation interception and use by maize/peanut intercrop canopy. - Agr. Forest Meteorol. 139: 74-83, 2006. Go to original source...
  5. Baldocchi, D.D., Wilson, K.B., Gu, L.H.: How the environment, canopy structure and canopy physiological functioning influence carbon, water and energy fluxes of a temperate broad-leaved deciduous forest-an assessment with the biophysical model canoak. - Tree Physiol. 22: 1065-1077, 2002. Go to original source...
  6. Ben-Asher, J., Garcia, A.G.Y., Hoogenboom, G.: Effect of high temperature on photosynthesis and transpiration of sweet corn (Zea mays L. Var. Rugosa). - Photosynthetica 46: 595-603, 2008. Go to original source...
  7. Cousins, A.B., Bloom, A.J.: Influence of elevated CO2 and nitrogen nutrition on photosynthesis and nitrate photoassimilation in maize (Zea mays L.). - Plant Cell Environ. 26: 1525-1530, 2003. Go to original source...
  8. Curtis, P.S., Vogel, C.S., Wang, X.Z., Pregitzer, K.S., Zak, D.R., Lussenhop, J., Kubiske, M., Teeri, J.A.: Gas exchange, leaf nitrogen, and growth efficiency of Populus tremuloides in a CO2-enriched atmosphere. - Ecol. Appl. 10: 3-17, 2000.
  9. Drake, B.G., GonzalezMeler, M.A., Long, S.P.: More efficient plants: A consequence of rising atmospheric CO2? - Ann. Rev. Plant Physiol. Plant Mol. Biol. 48: 609-639, 1997. Go to original source...
  10. Fan, Y.Z., Zhong, Z.M., Zhang, X.Z.: A comparative analysis of photosynthetic characteristics of hulless barley at two altitudes on the tibetan plateau. - Photosynthetica 49: 112-118, 2011. Go to original source...
  11. Gallo, K.P., Daughtry, C.S.T.: Techniques for measuring intercepted and absorbed photosynthetically active radiation in corn canopies. - Agron. J. 78: 752-756, 1986. Go to original source...
  12. Gardiol, J.M., Serio, L.A., Della Maggiora, A.I.: Modelling evapotranspiration of corn (Zea mays L.) under different plant densities. - J. Hydrol. 271: 188-196, 2003. Go to original source...
  13. Heichel, G.H.: Prior illumination and respiration of maize leaves in dark. - Plant Physiol. 46: 359-&, 1970. Go to original source...
  14. Ihnken, S., Roberts, S., Beardall, J.: Differential responses of growth and photosynthesis in the marine diatom chaetoceros muelleri to CO2 and light availability. - Phycology 50: 182-193, 2011. Go to original source...
  15. Kalttorres, W., Kerr, P.S., Usuda, H., Huber, S.C.: Diurnal changes in maize leaf photosynthesis.1. Carbon exchangerate, assimilate export rate, and enzyme-activities. - Plant Physiol. 83: 283-288, 1987. Go to original source...
  16. Kim, S.H., Sicher, R.C., Bae, H., Gitz, D.C., Baker, J.T., Timlin, D.J., Reddy, V.R.: Canopy photosynthesis, evapotranspiration, leaf nitrogen, and transcription profiles of maize in response to co2 enrichment. - Glob. Change Biol. 12: 588-600, 2006. Go to original source...
  17. Kim, S.H., Gitz, D.C., Sicherb, R.C., Baker, J.T., Timlin, D.J., Reddy, V.R.: Temperature dependence of growth, development, and photosynthesis in maize under elevated CO2. - Environ. Exp. Bot. 61: 224-236, 2007. Go to original source...
  18. Kimball, B.A., Bernacchi, C.J.: Evapotranspiration, canopy temperature, and plant water relations. - In: Nosberger, J., Long, S.P., Norby, R.J., Stitt, M., Hendrey, G.R., Blum, H. (ed.): Ecological Studies Managed Ecosystems and CO2. Pp. 311-324. Springer, Dordrecht 2006. Go to original source...
  19. Leuning, R., Wang, Y.P., Cromer, R.N.: Model simulations of spatial distributions and daily totals of photosynthesis in Eucalyptus grandis canopies. - Oecologia 88: 494-503, 1991. Go to original source...
  20. Loewe, A., Einig, W., Shi, L., Dizengremel, P., Hampp, R.: Mycorrhiza formation and elevated CO2 both increase the capacity for sucrose synthesis in source leaves of spruce and aspen. - New Phytol. 145: 565-574, 2000. Go to original source...
  21. Maddonni, G., Chelle, M., Drouet, J.L., Andrieu, B.: Light interception of contrasting azimuth canopies under square and rectangular plant spatial distributions: Simulations and crop measurements. - Field Crop. Res. 70: 1-13, 2001a. Go to original source...
  22. Maddonni, G.A., Otegui, M.E., Cirilo, A.G.: Plant population density, row spacing and hybrid effects on maize canopy architecture and light attenuation. - Field Crop Res. 71: 183-193, 2001b. Go to original source...
  23. Maddonni, G.A., Cirilo, A.G., Otegui, M.E.: Row width and maize grain yield. - Agron. J. 98: 1532-1543, 2006. Go to original source...
  24. Meir, P., Kruijt, B., Broadmeadow, M., Barbosa, E., Kull, O., Carswell, F., Nobre, A., Jarvis, P.G.: Acclimation of photosynthetic capacity to irradiance in tree canopies in relation to leaf nitrogen concentration and leaf mass per unit area. - Plant Cell Environ. 25: 343-357, 2002. Go to original source...
  25. Morison, J.I.L.: Sensitivity of stomata and water-use efficiency to high CO2. - Plant Cell Environ. 8: 467-474, 1985. Go to original source...
  26. Niinemets, U., Valladares, F.: Photosynthetic acclimation to simultaneous and interacting environmental stresses along natural light gradients: Optimality and constraints. - Plant Biol. 6: 254-268, 2004. Go to original source...
  27. Niinemets, U., Cescatti, A., Rodeghiero, M., Tosens, T.: Complex adjustments of photosynthetic potentials and internal diffusion conductance to current and previous light availabilities and leaf age in mediterranean evergreen species quercus ilex. - Plant Cell Environ. 29: 1159-1178, 2006. Go to original source...
  28. Nowak, R.S., Ellsworth, D.S., Smith, S.D.: Functional responses of plants to elevated atmospheric CO2 - do photosynthetic and productivity data from face experiments support early predictions? - New Phytol. 162: 253-280, 2004. Go to original source...
  29. Pattey, E., Rochette, P., Desjardins, R.L., Dubé, P.A.: Estimation of the net CO2 assimilation rate of a maize (Zea mays L.) canopy from leaf chamber measurements. - Agr. Forest Meteorol. 55: 37-57, 1991. Go to original source...
  30. Saxe, H., Ellsworth, D.S., Heath, J.: Tree and forest functioning in an enriched CO2 atmosphere. - New Phytol. 139: 395-436, 1998. Go to original source...
  31. Schurr, U., Walter, A., Rascher, U.: Functional dynamics of plant growth and photosynthesis - from steady-state to dynamics - from homogeneity to heterogeneity. - Plant Cell Environ. 29: 340-352, 2006. Go to original source...
  32. Sciutti, R., Morini, S.: Water-loss and photosynthesis of plum plantlets is influenced by relative-humidity during rooting in vitro. - J Hort. Sci. 70: 221-228, 1995. Go to original source...
  33. Shuting, D., Changhao, H., Rongqi, G.: Rates of apparent photosynthesis, respiration and dry matter accumulation in maize canopies. - Biol. Plant. 35: 273-277, 1993. Go to original source...
  34. Singsaas, E.L., Sharkey, T.D.: The effects of high temperature on isoprene synthesis in oak leaves. - Plant Cell Environ. 23: 751-757, 2000. Go to original source...
  35. Stewart, D.W., Dwyer, L.M., Carrigan, L.L.: Phenological temperature response of maize. - Agron. J. 90: 73-79, 1998. Go to original source...
  36. Swan, I.R., Volum, A.G.: Estimation of evaporation from temperature and relative-humidity. - J. Aust. Inst. Agr. Sci. 52: 222-224, 1986.
  37. Valladares, F.: Light heterogeneity and plants: From ecophysiology to species coexistence and biodiversity. - Prog. Bot. 64: 439-471, 2003. Go to original source...
  38. Vidovič, J.: Effect of the change of leaf angle arrangement on productivity of maize (Zea mays L.) stands. - Biol. Plant. 16: 174-183, 1974. Go to original source...
  39. Wang, Z., Yang, W.Y., Wu, X.Y., Wu, Q.L.: [Effects of maize plant type and planting width on the early morphological characters and yield of relay planted soybean.] - Chin. J. Appl. Ecol. 19: 323-329, 2008. [In Chin.]
  40. Ward, J.K., Strain, B.R.: Elevated CO2 studies: Past, present and future. - Tree Physiol. 19: 211-220, 1999. Go to original source...
  41. Watling, J.R., Press, M.C., Quick, W.P.: Elevated CO2 induces biochemical and ultrastructural changes in leaves of the C4 cereal sorghum. - Plant Physiol. 123: 1143-1152, 2000. Go to original source...
  42. Zhao, A.: [The study of leaf blade function in summer maize.] - Till. Cultiv. 4: 26-32, 1986. [In Chin.]