Photosynthetica, 2020 (vol. 58), 1

Photosynthetica 2020, 58(1):72-79 | DOI: 10.32615/ps.2019.153

N-glycosylation regulates photosynthetic efficiency of Arabidopsis thaliana

Q.-S. JIAO, G.-T. NIU, F.-F. WANG, J.-Y. DONG, T.-S. CHEN, C.-F. ZHOU, Z. HONG
State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210046 Jiangsu, China

N-glycosylation is one of the most important protein modifications in eukaryotes. It has been well established that N-glycosylation plays multiple roles in regulating stress tolerance of plants. However, the effects and mechanism of N-glycosylation on photosynthesis have not been well understood. In the present study, an obvious decrease in photosynthetic capacity and dry mass were detected in alg3-3 and cgl1-1, two typical mutants in N-glycosylation process. The maximal photochemical efficiency of PSII decreased significantly in cgl1-1. The values of effective quantum yield of PSII photochemistry, rate of photosynthetic electron transport through PSII, and photochemical quenching coefficient, which reflected the photochemical efficiency of plants, decreased as well, while the values of quantum yield of nonregulated energy dissipation of PSII showed obvious enhancement, the similar tendency was also observed in alg3-3. Furthermore, we found that N-glycosylation was also required to maintain the stability of a chloroplast-located protein CAH1, which was closely related to photosynthesis. These results suggest that N-glycosylation plays crucial roles in maintaining photosynthetic efficiency.

Keywords: asparagine-linked glycosylation; biomass; carbonic anhydrase; chlorophyll fluorescence.

Received: March 27, 2019; Accepted: November 15, 2019; Prepublished online: December 17, 2019; Published: March 10, 2020Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
JIAO, Q.-S., NIU, G.-T., WANG, F.-F., DONG, J.-Y., CHEN, T.-S., ZHOU, C.-F., & HONG, Z. (2020). N-glycosylation regulates photosynthetic efficiency of Arabidopsis thaliana. Photosynthetica58(1), 72-79. doi: 10.32615/ps.2019.153.
Download citation

Supplementary files

Download fileJiao 2252 supplement.docx

File size: 435.62 kB

References

  1. Aebi M.: N-linked protein glycosylation in the ER. - BBA-Mol. Cell. Res. 1833: 2430-2437, 2013. Go to original source...
  2. Aebi M., Bernasconi R., Clerc S., Molinari M.: N-glycan structures: recognition and processing in the ER. - Trends Biochem. Sci. 35: 74-82, 2010. Go to original source...
  3. Badger M.R., Price G.D.: The role of carbonic-anhydrase in photosynthesis. - Annu. Rev. Plant Phys. 45: 369-392, 1994. Go to original source...
  4. Barbagallo R.P., Oxborough K., Pallett K.E., Baker N.R.: Rapid, noninvasive screening for perturbations of metabolism and plant growth using chlorophyll fluorescence imaging. - Plant Physiol. 132: 485-493, 2003. Go to original source...
  5. Barber J., Andersson B.: Too much of a good thing: light can be bad for photosynthesis. - Trends Biochem. Sci. 17: 61-66, 1992. Go to original source...
  6. Bickel T., Lehle L., Schwarz M. et al.: Biosynthesis of lipid-linked oligosaccharides in Saccharomyces cerevisiae: Alg13p and Alg14p form a complex required for the formation of GlcNAc(2)-PP-dolichol. - J. Biol. Chem. 280: 34500-34506, 2005. Go to original source...
  7. Burén S., Ortega-Villasante C., Blanco-Rivero A. et al.: Impor-tance of post-translational modifications for functionality of a chloroplast-localized carbonic anhydrase (CAH1) in Arabidopsis thaliana. - PLoS ONE 6: e21021, 2011. Go to original source...
  8. Demmig-Adams B., Adams III W.W., Barker D.H. et al.: Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. - Physiol. Plantarum 98: 253-264, 1996. Go to original source...
  9. Demmig-Adams B., Garab G., Adams III WW., Govindjee: Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Pp. 649. Springer, Dordrecht 2014. Go to original source...
  10. Derks A., Schaven K., Bruce D.: Diverse mechanisms for photoprotection in photosynthesis. Dynamic regulation of photosystem II excitation in response to rapid environmental change. - BBA-Bioenergetics 1847: 468-485, 2015.
  11. Dyballa N., Metzger S.: Fast and sensitive colloidal coomassie G-250 staining for proteins in polyacrylamide gels. - JOVE-J. Vis. Exp. 3: 422-427, 2009. Go to original source...
  12. Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron-transport and quenching of chlorophyll fluorescence. - BBA-Gen. Subjects 990: 87-92, 1989. Go to original source...
  13. Green B., Parson W.W.: Light-Harvesting Antennas in Photo-synthesis. Pp. 516. Springer, Dordrecht 2003. Go to original source...
  14. Gutensohn M., Fan E.G., Frielingsdorf S. et al.: Toc, Tic, Tat et al.: Structure and function of protein transport machineries in chloroplasts. - Plant Physiol. 163: 333-347, 2006. Go to original source...
  15. Hamdani S., Khan N., Perveen S. et al.: Changes in the photosynthesis properties and photoprotection capacity in rice (Oryza sativa) grown under red, blue, or white light. - Photosynth. Res. 139: 107-121, 2019. Go to original source...
  16. Harbinson J., Genty B., Baker N.: The relationship between CO2 assimilation and electron transport in leaves. - Photosynth. Res. 25: 213-224, 1990. Go to original source...
  17. Helenius A., Aebi M.: Intracellular functions of N-linked glycans. - Science 291: 2364-2369, 2001. Go to original source...
  18. Henquet M., Lehle L., Schreuder M. et al.: Identification of the gene encoding the α1,3-mannosyltransferase (ALG3) in Arabidopsis and characterization of downstream N-glycan processing. - Plant Cell 20: 1652-1664, 2008. Go to original source...
  19. Higgins C.F.: Flip-flop: The transmembrane translocation of lipids. - Cell 79: 393-395, 1994. Go to original source...
  20. Hong Z., Jin H., Fitchette A.-C. et al.: Mutations of an α1,6 mannosyltransferase inhibit endoplasmic reticulum-asso-ciated degradation of defective brassinosteroid receptors in Arabidopsis. - Plant Cell 21: 3792-3802, 2009. Go to original source...
  21. Jarvis P., Soll J: Toc, Tic, and chloroplast protein import. - BBA-Mol. Cell. Res. 1541: 64-79, 2001.
  22. Kang B.S., Baek J.H., Macoy D.M. et al.: N-glycosylation process in both ER and Golgi plays pivotal role in plant immunity. - J. Plant Biol. 58: 374-382, 2015. Go to original source...
  23. Kang J.S., Frank J., Kang C.H. et al.: Salt tolerance of Arabidopsis thaliana requires maturation of N-glycosylated proteins in the Golgi apparatus. - P. Natl. Acad. Sci. USA 105: 5933-5938, 2008. Go to original source...
  24. Koiwa H., Li F., McCully M.G. et al.: The STT3a subunit isoform of the Arabidopsis oligosaccharyltransferase controls adaptive responses to salt/osmotic stress. - Plant Cell 15: 2273-2284, 2003. Go to original source...
  25. Kozi A.: Production and scavenging of reactive oxygen species in chloroplasts and their functions. - Plant Physiol. 141: 391-396, 2006. Go to original source...
  26. Kramer D.M., Johnson G., Kiirats O., Edwards G.E.: New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. - Photosynth. Res. 79: 209, 2004. Go to original source...
  27. Kupriyanova E., Pronina N., Los D.: Carbonic anhydrase - a universal enzyme of the carbon-based life. - Photosynthetica 55: 3-19, 2017. Go to original source...
  28. Larkin A., Imperiali B.: The expanding horizons of asparagine-linked glycosylation. - Biochemistry 50: 4411-4426, 2011. Go to original source...
  29. Lazár D.: Parameters of photosynthetic energy partitioning. - J. Plant Physiol. 175: 131-147, 2015. Go to original source...
  30. Liang Y., Urano D., Liao K.L. et al.: A nondestructive method to estimate the chlorophyll content of Arabidopsis seedlings. - Plant Methods 13: 26, 2017. Go to original source...
  31. Liu C., Niu G., Zhang H. et al.: Trimming of N-glycans by the Golgi-localized α-1, 2-mannosidases, MNS1 and MNS2, is crucial for maintaining RSW2 protein abundance during salt stress in Arabidopsis. - Mol. Plant 11: 678-690, 2018. Go to original source...
  32. Lu C., Zhang J.: Modifications in photosystem II photochemistry in senescent leaves of maize plants. - J. Exp. Bot. 49: 1671-1679, 1998. Go to original source...
  33. Magyar M., Sipka G., Kovács L. et al.: Rate-limiting steps in the dark-to-light transition of Photosystem II-revealed by chlorophyll-a fluorescence induction. - Sci Rep.-UK 8: 2755, 2018. Go to original source...
  34. McCormack M.E., Liu X., Jordan M.R., Pajerowska-Mukhtar K.M.: An improved high-throughput screening assay for tunicamycin sensitivity in Arabidopsis seedlings. - Front. Plant Sci. 6: 663, 2015. Go to original source...
  35. Müller P., Li X.P., Niyogi K.K.: Non-photochemical quenching. A response to excess light energy. - Plant Physiol. 125: 1558-1566, 2001. Go to original source...
  36. Murchie E.H., Lawson T.: Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. - J. Exp. Bot. 64: 3983-3998, 2013. Go to original source...
  37. Ort D.R.: When there is too much light. - Plant Physiol. 125: 29-32, 2001. Go to original source...
  38. Pospíšil P.: Production of reactive oxygen species by photo-system II. - BBA-Bioenergetics 1787: 1151-1160, 2009. Go to original source...
  39. Reiss G., te Heesen S., Zimmerman J. et al.: Isolation of the ALG6 locus of Saccharomyces cerevisiae required for glucosylation in the N-linked glycosylation pathway. - Glycobiology 6: 493-498, 1996. Go to original source...
  40. Samuelsson G., Karlsson J.: Chloroplastic carbonic anhydrases. -In: Aro E.-M., Andersson B. (ed.): Regulation of Photo-synthesis. Pp. 313-320. Springer , Dordrecht 2001. Go to original source...
  41. Schansker G., Tóth S.Z., Holzwarth A.R., Garab G.: Chlorophyll a fluorescence: Beyond the limits of the QA model. - Photosynth. Res. 120: 43-58, 2014. Go to original source...
  42. Schoberer J., Shin Y.J., Vavra U. et al.: Analysis of protein glycosylation in the ER. - In: Hawes C., Kriechbaumer V. (ed.): The Plant Endoplasmic Reticulum. Methods in Molecular Biology. Vol. 1691. Pp. 205-222. Humana Press, New York 2018.
  43. Schollen E., Grünewald S., Keldermans L. et al.: CDG-Id caused by homozygosity for an ALG3 mutation due to segmental maternal isodisomy UPD3(q21.3-qter). - Eur. J. Med. Genet. 48: 153-158, 2005. Go to original source...
  44. Silberstein S., Gilmore R.: Biochemistry, molecular biology, and genetics of the oligosaccharyltransferase. - FASEB J. 10: 849-858, 1996. Go to original source...
  45. Song W., Mentink R.A., Henquet M.G. et al.: N-glycan occupancy of Arabidopsis N-glycoproteins. - J. Proteomics 93: 343-355, 2013. Go to original source...
  46. Stagljar I., te Heesen S., Aebi M.: New phenotype of mutations deficient in glucosylation of the lipid-linked oligosaccharide: cloning of the ALG8 locus. - P. Natl. Acad. Sci. USA 91: 5977-5981, 1994. Go to original source...
  47. Stirbet A.: Excitonic connectivity between photosystem II units: What is it, and how to measure it? - Photosynth. Res. 116: 189-214, 2013. Go to original source...
  48. Strasser R.: Plant protein glycosylation. - Glycobiology 26: 926-939, 2016. Go to original source...
  49. Villarejo A., Burén S., Larsson S. et al.: Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast. - Nat. Cell Biol. 7: 1224-1231, 2005. Go to original source...
  50. von Schaewen A., Sturm A., O'Neill J., Chrispeels M.J.: Isolation of a mutant Arabidopsis plant that lacks N-acetyl glucosaminyl transferase I and is unable to synthesize Golgi-modified complex N-linked glycans. - Plant Physiol. 102: 1109-1118, 1993. Go to original source...
  51. Zhang M., Henquet M., Chen Z. et al.: LEW3, encoding a putative α-1,2-mannosyltransferase (ALG11) in N-linked glycoprotein, plays vital roles in cell-wall biosynthesis and the abiotic stress response in Arabidopsis thaliana. - Plant J. 60: 983-999, 2009. Go to original source...
  52. Zielinska D.F., Gnad F., Schropp K. et al.: Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. - Mol. Cell 46: 542-548, 2012. Go to original source...