Photosynthetica, 2016 (vol. 54), issue 2

Photosynthetica 2016, 54(2):259-266 | DOI: 10.1007/s11099-016-0079-z

Effect of low irradiance on the photosynthetic performance and spiking of Phalaenopsis

Y. C. Liu1, C. H. Liu2, Y. C. Lin2, C. H. Lu2, W. H. Chen3, H. L. Wang1,2,*
1 Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan, Republic of China
2 Institute of Biotechnology, National University of Kaohsiung, Kaohsiung, Taiwan, Republic of China
3 Orchid Research Center, National Cheng Kung University, Tainan, Taiwan, Republic of China

Lowering irradiance can delay the flower stalk, i.e., spike development, in order to schedule flowering time of Phalaenopsis; however, the effect on photosynthetic performance and spiking inhibition remains poorly understood. We compared light and shade treatments of Phalaenopsis aphrodite subsp. formosana in order to determine how limiting light affects day-night changes in the photosynthetic capacity of leaves and the carbon pool of leaves and stems resulting in delayed spiking. The low irradiance treatment [20 μmol(photon) m-2 s-1] for six weeks did not affect potential functions of photosynthetic apparatus estimated by chlorophyll a fluorescence analysis, but it significantly reduced the net CO2 uptake and O2 evolution rates, carbohydrate and organic acid concentrations, and amplitudes of CAM activity in new and fully expanded leaves of Phalaenopsis and delayed the spiking compared with the control kept at 150 μmol(photon) m-2 s-1. The shortened stem contained a remarkably high sucrose concentration, accounting for more than 80% of total soluble sugars for both treatments throughout the day. Moreover, the sucrose concentration was unaffected by the lowering of irradiance. The relationship between the sucrose content and spiking seemed to be loose; the major factor(s) for spiking in Phalaenopsis remained to be ascertained as the flower stalk bud is attached to the shortened stem.

Keywords: CAM; carbohydrate; chlorophyll fluorescence; flower stalk; gas exchange; oxygen evolution

Received: March 30, 2015; Accepted: October 6, 2015; Published: June 1, 2016Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Liu, Y.C., Liu, C.H., Lin, Y.C., Lu, C.H., Chen, W.H., & Wang, H.L. (2016). Effect of low irradiance on the photosynthetic performance and spiking of Phalaenopsis. Photosynthetica54(2), 259-266. doi: 10.1007/s11099-016-0079-z.
Download citation

References

  1. Baker N.R.: Chlorophyll fluorescence: A probe of photosynthesis in vivo. - Annu. Rev. Plant Biol. 59: 89-113, 2008. Go to original source...
  2. Bilger W., Björkman O.: Role of the xanthophylls cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in Hedera canariensis. - Photosynth. Res. 25: 173-185, 1990. Go to original source...
  3. Callaway T.R., Martin S.A., Wampler J.L. et al.: Malate content of forage varieties commonly fed to cattle. - J. Dairy Sci. 80: 1651-1655, 1997. Go to original source...
  4. Ceusters J., Borland A.M., Godts C. et al.: Crassulacean acid metabolism under severe light limitation: a matter of plasticity in the shadows? - J. Exp. Bot. 62: 283-291, 2011. Go to original source...
  5. Chang X., Alderson P.G., Wright C.J.: Solar irradiance level alters the growth of basil (Ocimum basilicum L.) and its content of volatile oils. - Environ. Exp. Bot. 63: 216-223, 2008. Go to original source...
  6. Chen W.H., Tseng Y.C., Liu Y.C. et al.: Influence of cool-night on the photosynthetic efficiency and the nonstructural carbohydrate and organic acid pools in Phalaenopsis aphrodite. - Plant Cell Rep. 27: 1667-1675, 2008. Go to original source...
  7. Chugh S., Guha S., Rao I.U.: Micropropagation of orchids: A review on the potential of different explants. - Sci. Hortic.-Amsterdam 122: 507-520, 2009.
  8. Demmig-Adams B., Adams III W.W., Baker D.H. et al.: Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. - Physiol. Plantarum 98: 253-264, 1996. Go to original source...
  9. Endo M., Ikusima I.: Diurnal rhythm and characteristics of photosynthesis and respiration in the leaf and root of a Phalaenopsis plant. - Plant Cell Physiol. 30: 43-47, 1989. Go to original source...
  10. Endo M., Ikusima I.: Changes in concentrations of sugars and organic acids in the long-lasting flower clusters of Phalaenopsis. - Plant Cell Physiol. 33: 7-12, 1992.
  11. Franco A.C., Herzog B., Hübner C. et al.: Diurnal changes in chlorophyll a fluorescence, CO2-exchange and organic acid decarboxylation in the tropical CAM tree Clusia hilariana. - Tree Physiol. 19: 635-644, 1999. Go to original source...
  12. Genty B., Briantais J.M., Baker N.R.: The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. - Biochim. Biophys. Acta 990: 87-92, 1989. Go to original source...
  13. Guo W.J., Lee N.: Effect of leaf and plant age and day/night temperature on net CO2 uptake in Phalaenopsis amabilis var. Formosa. - J. Am. Soc. Hortic. Sci. 131: 320-326, 2006. Go to original source...
  14. Hisamatsu T., Sugiyama Y., Kubota S., Koshioka M.: [Delaying anthesis by dark treatment in Phalaenopsis.] - J. Jap. Soc. Hortic. Sci. 70: 264-266, 2001. [In Japanese] Go to original source...
  15. Kataoka K., Sumitomo K., Fudano T., Kawase K.: Changes in sugar content of Phalaenopsis leaves before floral transition. - Sci. Hortic.-Amsterdam 102: 121-132, 2004.
  16. Konow E.A., Wang Y.T.: Irradiance levels affect in vitro and greenhouse growth, flowering, and photosynthetic behavior of a hybrid Phalaenopsis orchid. - J. Am. Soc. Hortic. Sci. 126: 531-536, 2001. Go to original source...
  17. Kubota S., Yoneda K.: [Effects of light intensity preceding day/night temperatures on the sensitivity of Phalaenopsis to flower.] - J. Jap. Soc. Hortic. Sci. 62: 595-600, 1993. [In Japanese] Go to original source...
  18. Liu C.H., Liu Y.C., Chen W.H., Wang H.L.: [Effects of underneath-bench shading treatment on spiking and flowering of Doritaenopsis.] - J. Agr. Assoc. Taiwan 11: 501-513, 2010. [In Chinese]
  19. Liu Y.C., Tseng K.M., Chen C.C. et al.: Warm-night temperature delays spike emergence and alters carbon pool metabolism in the stem and leaves of Phalaenopsis aphrodite. - Sci. Hortic.-Amsterodam 161: 198-203, 2013.
  20. Maxwell K., Johnson G.N.: Chlorophyll fluorescence. - A practical guide. - J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  21. Osmond C.B.: Crassulacean acid metabolism: a curiosity in context. - Annu. Rev. Plant Physio. 29: 379-414, 1978. Go to original source...
  22. Pollet B., Steppe K., Van Labeke M.C., Lemeur R.: Diurnal cycle of chlorophyll fluorescence in Phalaenopsis. - Photosynthetica 47: 309-312, 2009. Go to original source...
  23. Pollet B., Vanhaecke L., Dambre P. et al.: Low night temperature acclimation of Phalaenopsis. - Plant Cell Rep. 30: 1125-1134, 2011. Go to original source...
  24. Popp M., Janett H.P., Lüttge U., Medina E.: Metabolite gradients and carbohydrate translocation in rosette leaves of CAM and C3 bromeliads. - New Phytol. 157: 649-656, 2003. Go to original source...
  25. Quiles M.J.: Photoinhibition of photosystem- and II using chlorophyll fluorescence measurements. - J. Biol. Edu. 39: 136-138, 2005 Go to original source...
  26. Rohácek K., Barták M.: Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. - Photosynthetica 37: 339-363, 1999. Go to original source...
  27. Roussos P.A., Denaxa N.K., Damvakaris T. et al.: Effect of alleviating products with different mode of action on physiology and yield of olive under drought. - Sci. Hortic.-Amsterodam 125: 700-711, 2010.
  28. Sakanishi Y., Imanishi H., Ishida G.: [Effect of temperature on growth and flowering of Phalaenopsis amabilis.] - Bull. Univ. Osaka Prefecture, B 32: 1-9, 1980. [In Japanese]
  29. Souza A., de Paula A., Figueiredo-Ribeiro R.C.L.: Effects of irradiance on non-structural carbohydrates, growth, and hypoglycemic activity of Rhynchelytrum repens (Willd.) C.E. Hubb. (Poaceae). - Braz. J. Biol. 64: 697-706, 2004. Go to original source...
  30. Tsai W.T., Wang Y.T., Lin H.L.: Alternating temperature affects spiking of a hybrid Phalaenopsis. - Acta Hortic. 766: 307-314, 2008. Go to original source...
  31. Wang H.L., Lee P.D., Chen W.L. et al.: Osmotic stress-induced changes of sucrose metabolism in cultured sweet potato cells. - J. Exp. Bot. 51: 1991-1999, 2000.
  32. Wang Y.T.: Phalaenopsis light requirement during the induction of spiking. - HortScience 30: 59-61, 1995. Go to original source...
  33. Wang Y.T.: Phalaenopsis light requirements and scheduling of flowering. - Orchids 66: 934-939, 1997.
  34. Wu P.H., Liu C.H., Tseng K.M. et al.: Low irradiance alters carbon metabolism and delays flower stalk development in two orchids. - Biol. Plantarum 57: 764-768, 2013. Go to original source...
  35. Yang J.D., Zhao H.L., Zhang T.H.: Diurnal patterns of net photosynthetic rate, stomatal conductance, and chlorophyll fluorescence in leaves of field-grown mungbean (Phaseolus radiatus) and millet (Setaria italica). - J. Crop Hortic. Sci. 32: 273-279, 2004. Go to original source...