Photosynthetica, 2016 (vol. 54), issue 3

Photosynthetica 2016, 54(3):396-404 | DOI: 10.1007/s11099-016-0194-x

Responses of clonal growth and photosynthesis in Amomum villosum to different light environments

Y. H. Guo1,2, C. Yuan2, L. Tang2, J. M. Peng2, K. L. Zhang1, G. Li2, X. J. Ma1,*
1 Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, China
2 Institute of Medicinal Plant Development Yunnan Branch, Chinese Academy of Medical Sciences, Jinghong, China

Clonal growth is of great importance for survival, growth, expansion, and resource utilization of some species. Knowing how clonal plants respond morphologically and physiologically to different light environments can be useful to explain their occurrence and abundance patterns under specific environmental conditions. Responses of clonal growth, leaf gas exchange, fluorescence emission, and photosynthetic pigment concentrations to different light environments (100, 60, 30, and 15%) were studied in Amomum villosum, grown in the traditional way for economic purpose in Xishuangbanna, southwest China. The results showed that A. villosum attained vigorous clonal growth under 30% and 60% light, with a higher plant height, number of ramets, stolon length, thicker stems and stolons. Shade-grown A. villosum possessed a larger leaf area than that of the sun-grown plants in order to capture more light. For A. villosum, the higher light-saturated net photosynthetic rate, light-saturation point, larger fresh and dry biomass can explained the better clonal growth for A. villosum under 30% and 60% light. Amomum villosum attained the highest values of minimal chlorophyll fluorescence under 100% light and the lowest values of maximum photochemical efficiency of PSII under 15% light. Our findings indicated that the full irradiance was too strong and 15% light was too weak for A. villosum plants. It was also verified by higher concentrations of photosynthetic pigments in the shaded plants compared to those grown under full sun light. Our results suggested that A. villosum seemed to be adapted to moderate light environment (60-30%) which was indicated by vigorous clonal growth and higher photosynthesis. This information is very useful to select clonal species for rainforest or understory projects. The cultivation of A. villosum in rainforest should not be done under too strong (100%) or too weak light environment (less than 15%).

Keywords: gas exchange; leaf morphological traits; ramets; shade; stolon stretch

Received: August 16, 2015; Accepted: December 3, 2015; Published: September 1, 2016Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Guo, Y.H., Yuan, C., Tang, L., Peng, J.M., Zhang, K.L., Li, G., & Ma, X.J. (2016). Responses of clonal growth and photosynthesis in Amomum villosum to different light environments. Photosynthetica54(3), 396-404. doi: 10.1007/s11099-016-0194-x.
Download citation

References

  1. Aleric K.M., Kirkman L.K.: Growth and photosynthetic responses of the federally endangered shrub, Lindera melissifolia (Lauraceae), to varied light environments.-Am. J. Bot. 92: 682-689, 2005. Go to original source...
  2. Alpert P.: Effects of clonal integration on plant plasticity in Fragaria chiloensis.-Plant Ecol. 141: 99-106, 1999. Go to original source...
  3. Arnon D.I.: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris.-Plant Physiol. 24: 1-15, 1949. Go to original source...
  4. Bailey S., Horton P., Walters R.G.: Acclimation of Arabidopsis thaliana to the light environment: the relationship between photosynthetic function and chloroplast composition.-Planta 218: 793-802, 2004. Go to original source...
  5. Baker N.R.: Chlorophyll fluorescence: a probe of photosynthesis in vivo.-Annu. Rev. Plant Biol. 59: 89-113, 2008. Go to original source...
  6. Barth C., Krause G.H., Winter K.: Responses of photosystem I compared with photosystem II to high light stress in tropical shade and sun leaves.-Plant Cell Environ. 24: 163-176, 2001. Go to original source...
  7. Bond B.J., Farnsworth B.T., Coulombe R.A., Winner W.E.: Foliage physiology and biochemistry in response to light gradients in conifers with varying shade tolerance.-Oecologia 120: 183-192, 1999. Go to original source...
  8. Campos M.A.A., Uchida T.: Influence of shade on the growth of seedlings of three Amazon species.-Pesqui. Agropecu. Bras. 37: 281-288, 2002. Go to original source...
  9. Catoni R., Granata M.U., Sartori F. et al.: Corylus avellana responsiveness to light variations: morphological, anatomical, and physiological leaf trait plasticity.-Photosynthetica 53: 35-46, 2015. Go to original source...
  10. Chaves A.R., Ten-Caten A., Pinheiro H.A. et al.: Seasonal changes in photoprotective mechanisms of leaves from shaded and unshaded field-grown coffee (Coffea arabica L.) trees.-Trees 22: 351-361, 2008. Go to original source...
  11. Chen H.Y., Klinka K.: Light availability and photosynthesis of Pseudotsuga menziesii seedlings grown in the open and in the forest understory.-Tree Physiol. 17: 23-29, 1997. Go to original source...
  12. DaMatta F.M.: Ecophysiological constraints on the production of shaded and unshaded coffee: a review.-Field Crop. Res. 86: 99-114, 2004. Go to original source...
  13. Dong M.: Morphological responses to local light conditions in clonal herbs from contrasting habitats, and their modification due to physiological integration.-Oecologia 101: 282-288, 1995. Go to original source...
  14. Dong M., Pierdominici M.G.: Morphology and growth of stolons and rhizomes in three clonal grasses, as affected by different light supply.-Vegetatio 116: 25-32, 1995.
  15. Feng Y.L., Cao K.F., Feng Z.L.: Thermal dissipation, leaf rolling and inactivation of PSII reaction centres in Amomum villosum.-J. Trop. Ecol. 18: 865-876, 2002a. Go to original source...
  16. Feng Y.L., Li X.: The combined effects of soil moisture and irradiance on growth, biomass allocation, morphology and photosynthesis in Amomum villosum.-Agroforest. Syst. 71: 89-98, 2007. Go to original source...
  17. Feng Z.L., Feng Y.L., Cao K.F.: Effects of light intensity on photoinhibition of photosynthesis and thermal dissipation in Amomum villosum Lour.-Acta Phytoecol. Sin. 26: 77-82, 2002b.
  18. Hanba Y.T., Kogami H., Terashima I.: The effect of growth irradiance on leaf anatomy and photosynthesis in Acer species differing in light demand.-Plant Cell Environ. 25: 1021-1030, 2002. Go to original source...
  19. Huang D., Wu L., Chen J.R., Dong L.: Morphological plasticity, photosynthesis and chlorophyll fluorescence of Athyrium pachyphlebium at different shade levels.-Photosynthetica 49: 611-618, 2011. Go to original source...
  20. Jackson R.B., Caldwell M.M.: Geostatistical patterns of soil heterogeneity around individual perennial plants.-J. Ecol. 81: 683-692, 1993. Go to original source...
  21. Klimeš L., Klimešová J., Hendriks R., Groenendael J.: Clonal plant architecture: A comparative analysis of form and function.-In: Kroon H., Groenendael J. (ed.): The Ecology and Evolution of Clonal Plants. Pp.1-29. Backhuys Publishers, Leiden 1997.
  22. Koike T., Kitao M., Maruyama Y. et al.: Leaf morphology and photosynthetic adjustments among deciduous broad-leaved trees within the vertical canopy profile.-Tree Physiol. 21: 951-958, 2001. Go to original source...
  23. Laing W.A., Greer D.H., Schnell T.A.: Photoinhibition of photosynthesis causes a reduction in vegetative growth rates of dwarf bean (Phaseolus vulgaris) plants.-Funct. Plant Biol. 22: 511-520, 1995.
  24. Lam E., Oritz W., Mayfield S., Malkin R.: Isolation and characterization of a light-harvesting chlorophyll a/b protein complex associated with photosystem I.-Plant Physiol. 74: 650-655, 1984. Go to original source...
  25. Lechowicz M.J., Bell G.: The ecology and genetics of fitness in forest plants. II. Microspatial heterogeneity of the edaphic environment.-J. Ecol.79: 687-696, 1991. Go to original source...
  26. Leverenz J.W.: Shades shoot structure of conifers and the photosynthetic response to light at two CO2 partial pressure.-Funct. Ecol. 9: 413-421, 1995. Go to original source...
  27. Liscum E., Stowe Evans E.L.: Phototropism: A "simple" physiological response modulated by multiple interacting photosensory-response pathways.-Photochem. Photobiol. 72: 273-282, 2000. Go to original source...
  28. Liu H.M., Gao L., Zheng Z., Feng Z.L.: The impact of Amomum villosum cultivation on seasonal rainforest in Xishuangbanna, Southwest China.-Biodivers. Conserv. 15: 2971-2985, 2006. Go to original source...
  29. Lusk C.H., Reich P.B., Montgomery R.A. et al.: Why are evergreen leaves so contrary about shade?-Trends Ecol. Evol. 23: 299-303, 2008. Go to original source...
  30. Matos F.S., Wolfgramm R., Gonçalves F.V. et al.: Phenotypic plasticity in response to light in the coffee tree.-Environ. Exp. Bot. 67: 421-427, 2009. Go to original source...
  31. Oborny B., Bartha S.: Clonality in plant communities: an overview.-Abstracta Bot. 19: 115-127, 1995.
  32. Pires M.V., Almeida A.F., Figueiredo A.L. et al.: Photosynthetic characteristics of ornamental passion flowers grown under different light intensities.-Photosynthetica 49: 593-602, 2011. Go to original source...
  33. Poorter L.: Growth responses of 15 rain-forest tree species to a light gradient: the relative importance of morphological and physiological traits.-Ecology 13: 396-410, 1999. Go to original source...
  34. Rohácek K.: Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships.-Photosynthetica 40: 13-29, 2002. Go to original source...
  35. Roiloa S.R., Retuerto R.: Responses of the clonal Fragaria vesca to microtopographic heterogeneity under different water and light conditions.-Environ. Exp. Bot. 61: 1-9, 2007. Go to original source...
  36. Ryser P., Eek L.: Consequences of phenotypic plasticity vs. interspecific differences in leaf and root traits for acquisition of aboveground and belowground resources.-Am. J. Bot. 87: 402-411, 2000. Go to original source...
  37. Saitoh T., Seiwa K., Nishiwaki A.: Importance of physiological integration of dwarf bamboo to persistence in forest understorey: a field experiment.-J. Ecol. 90: 78-85, 2002. Go to original source...
  38. Schneider S., Ziegler C., Melzer A.: Growth towards light as an adaptation to high light conditions in Chara branches-New Phytol. 172: 83-91, 2006. Go to original source...
  39. Thornley J.H.: Mathematical Models in Plant Physiology. Pp. 318. Academic Press, London 1976.
  40. Valladares F., Gianoli E., Gómez J.M.: Ecological limits to plant phenotypic plasticity.-New Phytol. 176: 749-763, 2007. Go to original source...
  41. Wilk J.A., Kramer A.T., Ashley M.V.: High variation in clonal vs. sexual reproduction in populations of the wild strawberry, Fragaria virginiana (Rosaceae).-Ann. Bot.-London 104: 1413-1419, 2009. Go to original source...
  42. Wyka T., Robakowski P., Zytkowiak R.: Leaf age as a factor in anatomical and physiological acclimative responses of Taxus baccata L. needles to contrasting irradiance environments.-Photosynth. Res. 95: 87-99, 2008. Go to original source...
  43. Yang Z.J., Zheng H.S., Yin G.T. et al.: Influence of rubber plantation intercropping with Amomum villosum or coffee on soil fertility.-Forest Res. 8: 466-470, 1995.
  44. Yoshimura K.: Irradiance heterogeneity within crown affects photosynthetic capacity and nitrogen distribution of leaves in Cedrela sinensis.-Plant Cell Environ. 33: 750-758, 2010. Go to original source...
  45. Zhang Q., Chen Y.J., Song L.Y. et al.: Utilization of lightflecks by seedlings of five dominant tree species of different subtropical forest successional stages under low-light growth conditions.-Tree. Physiol. 32: 545-553, 2012. Go to original source...
  46. Zhang S., Ma K., Chen L.Z.: Response of photosynthetic plasticity of Paeonia suffruticosa to changed light environments.-Environ. Exp. Bot. 49: 121-133, 2003. Go to original source...
  47. Zhou S.Q.: Cultivation of Amomum villosum in tropical forests.-Forest. Ecol. Manage. 60: 157-162, 1993. Go to original source...