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Abstract

In [7] and [8], Iemhoff introduced a connection between the exis-
tence of a terminating sequent calculi of a certain kind and the uniform
interpolation property of the super-intuitionistic logic that the calcu-
lus captures. In this paper, we will generalize this relationship to also
cover the substructural setting on the one hand and a much more pow-
erful class of rules on the other. The resulted relationship then pro-
vides a uniform method to establish uniform interpolation property for
the logics FLe, FLew, CFLe, CFLew, IPC, CPC and their K and
KD-type modal extensions. More interestingly though, on the nega-
tive side, we will show that no extension of FLe can enjoy a certain
natural type of terminating sequent calculus unless it has the uniform
interpolation property. It excludes almost all super-intutionistic logics
and the logics K4 and S4 from having such a reasonable calculus.

1 Introduction

Proof systems are and always have been the main tool in any investigation of
the behavior of the mathematical theories from searching for the consistency
proofs and finding the possible decision procedures to capturing the admis-
sible rules and extracting the actual programs from given proofs. Following
this huge effectiveness, a technical approach has emerged to first design and

˚The authors are supported by the ERC Advanced Grant 339691 (FEALORA).
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then study the appropriate proof systems tailored for their sole use in proving
the properties of a given interesting theory. In this respect, proof systems
have been treated as the second rank citizens contrary to the independent
interesting mathematical objects that they could have been. Fortunately, in
the recent years, alongside this instrumentalist approach, another approach
has been also emerged; an approach that is more interested in the general be-
havior of the proof systems than their possible technical use in proof theory,
although it happens to bring its own fruits in the latter aspect, as well (see
[7], [8], [3]). This general approach widens the proof theoretic horizon with
its own structural problems including the existence problem (when does a
theory have a certain type of proof system?), the equivalence problem (when
are two proof systems equivalent?) and the characterization problem (is there
any characterization of the proof systems relative to a natural equivalence
relation?). Imitating the term universal algebra for the generic study of the
algebraic structures, we will call this approach the universal proof theory1

which focuses on the model theoretic style investigation of the different pos-
sible proof systems in their most general form.

As the first step in this so-called universal proof theory and following
the spirit of [7] and [8], we begin with the most basic problem of the kind,
the existence problem, addressing the existence of the natural sequent style
proof systems for a given propositional or modal logic. For this purpose,
we have to develop some strong relationships between the existence of some
sort of proof systems and some regularity conditions of the logic. One loose
example of such a relationship is the relationship between the existence of a
terminating calculus for a logic and its decidability. Why these relationships
are important? Because they reduce the existence problem partially or com-
pletely to the regularity conditions of the logic that are calculus-independent
and probably more amenable to our tools. Again using our loose example, we
know that if a logic is not decidable, it can not have a terminating calculus;
a fact which solves the existence problem negatively.

This paper is devoted to one of this kind of relationships and to explain
how, we have to browse the history a little bit, first. The story begins with
Pitts’ seminal work, [9], in which he introduced a proof theoretic method to
prove the uniform interpolation property for the propositional intuitionistic
logic. His technique is built on the following two main ideas: First he ex-
tended the notion of uniform interpolation from a logic to its sequent calculus
in a way that the uniform p-interpolants for a sequent are roughly the best

1We are grateful to Masoud Memarzadeh for this elegant terminological suggestion.
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left and right p-free formulas that if we add them to the left or right side
of the sequent, they make the sequent provable. This reduces the task of
proving uniform interpolation for the logic, to the task of finding these new
uniform interpolants for all sequents. For the latter, he assigned two sets of
p-free formulas to any sequent using the structure of the formulas occurred
in the sequent itself. To define these sets, though, he needed the second cru-
cial tool of the game namely the terminating calculus for IPC, introduced
in [4] by Dyckhoff. The terminating calculus provides a well-founded order
on sequents on which we can define the sets that we have mentioned before,
recursively.

Later, as witnessed in [8], Iemhoff recognized that the main point in the
first part of Pitts’ argument is flexible enough to apply on any rule with a
certain general form. This observation then lets her to lift the technique from
the intuitionistic logic to any extension of the intuitionistic logic presented
with a generic terminating calculus consisting of that certain sort of rules
that she calls centered rules. These rules are very natural rules to consider
and they are roughly the rules with one main formula in their consequence
such that the rule respects both the side of this main formula and the oc-
currence of atoms in it, i.e. if the main formula occurred in the left-side
(right-side) of the consequence, all non-contextual formulas in the premises
should also occur in the left-side (right-side) and any occurrence of any atom
in these formulas should also occur in the main formula. The usual conjunc-
tion and disjunction rules are the prototype examples of these rules while the
implication rules are the non-examples since they clearly do not respect the
side of the main formula.

As we explained, the investigations in [8] lead to an exciting relationship
between the existence of a terminating calculus consisting only of the centered
rules for a logic and the uniform interpolation property of the logic. Iemhoff
used this relationship first in a positive manner to prove the uniform in-
terpolation for some well-known super-intuitionistic and super-intuitionistic
modal logics including IPC, CPC, K and KD and their intuitionistic ver-
sions. And then she switched to the negative part to show that no centered
extension of the intuitionistic logic can have a terminating centered calculus
unless it has the uniform interpolation property. Since uniform interpolation
is a rare property for a logic, it excludes almost all logical systems, including
all super-intuitionistic logics except the seven logics with the uniform inter-
polation property from having a terminating centered calculus.

Now we are ready to explain what we will pursue in this paper. Our ap-
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proach is a generalization of the mentioned relationship between the existence
of a terminating calculus consisting of certain sort of rules and the uniform
interpolation property. Our results are the generalization of the results in
[7] and [8], in the following two aspects. First we use a much more general
class of rules that we will call semi-analytic and context-sharing semi-analytic
rules. These rules can be defied roughly as the centered rules relaxing the side
preserving condition. Therefore, they cover a vast variety of rules including
centered rules, implication rules, non-context sharing rules in substructural
logics and so many others. Second, we lower the base logic from the intu-
itionistic logic to the basic substructural logic FLe. It helps to provide a
uniform method to establish the uniform interpolation property which is ap-
plicable simultaneously for FLe, FLew, CFLe, CFLew and their K and KD
modal extensions on the one hand and the intuitionistic and classical logics
and their modal extensions on the other. (For the classical modal case see
[2], for the sub-structural logics see [1] and for intuitionistic and intutionis-
tic modal logics see [9] and [8].) It also sets the scene to provide the same
characterization for any semi-analytic extensions of FLe if we first provide a
terminating calculus for them.

While it is very appealing to develop a general method to prove uniform
interpolation, the main application of our investigation belongs to the neg-
ative side of the relationship. Applying our result negatively, we can also
push the result in [8] further to show that the logics without uniform inter-
polation property can not even have our more general type of terminating
calculi. For instance, using the well-known result on the characterization of
all super-intutionistic logics, [6], we know that except IPC, LC, KC, Bd2,
Sm, GSc and CPC, non of the super-intutionistic logics have a terminating
calculus consisting of semi-analytic and context-sharing semi-analytic rules
together with the centered axioms. The same also goes for the modal logics
K4 and S4.

2 Preliminaries

In this section we will cover some of the preliminaries needed for the follow-
ing sections. The definitions are similar to the same concepts in [8], but they
have been changed whenever it is needed.

First, note that all of the finite objects that we will use here can be
represented by a fixed reasonable binary string code. Therefore, by the length
of any object O including formulas, proofs, etc. we mean the length of this
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string code and we will denote it by |O|.

Definition 2.1. Let L and L1 be two languages. By a translation t : LÑ L1,
we mean an assignment which assigns a formula ϕCpp̄q P L1 to any logical
connective Cpp̄q P L such that any pi has at most one occurrence in ϕCpp̄q. It
is possible to extend a translation from the basic connectives of the language
to all of its formulas in an obvious compositional way. We will denote the
translation of a formula ϕ by ϕt and the translation of a multiset Γ, by
Γt “ tϕt|ϕ P Γu.

Note that for any translation t we have |ψt| ď Op1q|ψ| which shows that
all translations are polynomially bounded.

In this paper, we will work with a fixed but arbitrary language L that
is augmented by a translation t : t^,_,Ñ, ˚, 0, 1u Y L Ñ L that fixes all
logical connectives in L. For this reason and w.l.o.g, we will assume that
the language already includes the connectives t^,_,Ñ, ˚, 0, 1u. In addition,
whenever we investigate the multi-conclusion systems we always assume that
the translation expands to include `.

Example 2.2. The usual language of classical propositional logic is a valid
language in our setting. In this case, there is a canonical translation that
sends fusion, addition, 1 and 0 to conjunction, disjunction, J and K, respec-
tively. In this paper, whenever we pick this language, we assume that we are
working with this canonical translation.

By a sequent, we mean an expression of the form Γñ ∆, where Γ and ∆
are multisets of formulas in the language, and it is interpreted as ˚ΓÑ

Ř

∆.
By a single-conclusion sequent Γñ ∆ we mean a sequent that |∆| ď 1, and
we call it multi-conclusion otherwise. We denote multisets by capital Greek
letters such as Σ, Γ, Π, ∆ and Λ. However, sometimes we use the bar nota-
tion for multisets to make everything simpler. For instance, by ϕ̄, we mean
a multiset consisting of formulas ϕi.

Meta-language is the language with which we define the sequent calculi.
It extends our given language with the formula symbols (variables) such as ϕ
and ψ. A meta-formula is defined as the following: Atomic formulas and for-
mula symbols are meta-formulas and if ϕ̄ is a set of meta-formulas, then Cpϕ̄q
is also a meta-formula, where C P L is a logical connective of the language.
Moreover, we have infinitely many variables for meta-multisets and we use
capital Greek letters again for them, whenever it is clear from the context
whether it is a multiset or a meta-multiset variable. A meta-multiset is a
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multiset of meta-formulas and meta-multiset variables. By a meta-sequent
we mean a sequent where the antecedent and the succedent are both meta-
multisets. We use meta-multiset variable and context, interchangeably.

For a meta-formula ϕ, by V pϕq we mean the meta-formula variables and
atomic constants in ϕ. A meta-formula ϕ is called p-free, for an atomic for-
mula or meta-formula variable p, when p R V pϕq.

Let us recall some of the notions related to sequent calculi and some of
the important systems that we will use throughout the paper.

For a sequent S “ pΓ ñ ∆q, by Sa we mean the antecedent of the
sequent, which is Γ, and by Ss we mean the succedent of the sequent,
which is ∆. And, the multiplication of two sequents S and T is defined
as S ¨ T “ pSa Y Sa ñ T s Y T sq.

By a rule we mean an expression of the form

S1, ¨ ¨ ¨ , Sn

S0

where Si’s are meta-sequents. By an instance of a rule, we mean substi-
tuting multisets of formulas for its contexts and substituting formulas for its
meta-formula variables. A rule is backward applicable to a sequent S, when
the conclusion of the rule is S.

By a sequent calculus G, we mean a set of rules. A sequent S is derivable
in G, denoted by G $ S, if there exists a tree with sequents as labels of the
nodes such that the label of the root is S and in each node the set of the
labels of the children of the node together with the label of the node itself,
constitute an instance of a rule in the system. This tree is called the proof of
S in G which is sometimes called a tree-like proof to emphasize its tree-like
form.

Now consider the following set of rules:

Identity:

ϕñ ϕ

Contextual Axioms:
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Γñ J,∆ Γ,K ñ ∆

Context-free Axioms:

ñ 1 0ñ

Rules for 0 and 1:

Γñ ∆
L1

Γ, 1ñ ∆
Γñ ∆

R0
Γñ 0,∆

Conjunction Rules:

Γ, ϕñ ∆
L^

Γ, ϕ^ ψ ñ ∆

Γñ ϕ,∆ Γñ ψ,∆
R^

Γñ ϕ^ ψ,∆

Disjunction Rules:

Γ, ϕñ ∆ Γ, ψ ñ ∆
L_

Γ, ϕ_ ψ ñ ∆

Γñ ϕ,∆
R_

Γñ ϕ_ ψ,∆

Γñ ψ,∆
R_

Γñ ϕ_ ψ,∆

Fusion Rules:

Γ, ϕ, ψ ñ ∆
L˚

Γ, ϕ ˚ ψ ñ ∆

Γñ ϕ,∆ Σñ ψ,Λ
R˚

Γ,Σñ ϕ ˚ ψ,∆,Λ

Implication Rules:

Γñ ϕ,∆ Σ, ψ ñ Λ
LÑ

Γ,Σ, ϕÑ ψ ñ ∆,Λ

Γ, ϕñ ψ,∆
RÑ

Γñ ϕÑ ψ,∆

The system FLe consists of the single-conclusion version of all of these
rules. In the multi-conclusion case define CFLe with the same rules as FLe,
this time in their full multi-conclusion version and add ` to the language
and the following rules to the systems:

Rules for `:

Γ, ϕñ ∆ Σ, ψ ñ Λ
L`

Γ,Σ, ϕ` ψ ñ ∆,Λ

Γñ ϕ, ψ,∆
R`

Γñ ϕ` ψ,∆

Moreover, we have the following additional rules that we will use later:
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Weakening rules:

Γñ ∆
Lw

Γ, ϕñ ∆
Γñ ∆

Rw
Γñ ϕ,∆

Note that in the single-conclusion cases, in the rule pRwq, ∆ is empty.

Contraction rules:

Γ, ϕ, ϕñ ∆
Lc

Γ, ϕñ ∆

Γñ ∆, ϕ, ϕ
Rc

Γñ ϕ,∆

The rule pRcq is only allowed in multi-conclusion systems.

If we consider the logic FLe and add the weakening rules (contraction
rules), the resulted system is called FLew (FLec). The same also goes for
CFLew and CFLec.

We also have the following rule:

Context-sharing left implication:

Γñ ϕ Γ, ψ ñ ∆

Γ, ϕÑ ψ ñ ∆

Finally, note that Γ and ∆ are multisets everywhere, therefore the ex-
change rule is built in and hence admissible in our system. Moreover, note
that the calculi defined in this section are written in the given language which
can be any extension of the language of the system itself. For instance, FLe

is the calculus with the mentioned rules on our fixed language that can have
more connectives than t^,_, ˚,Ñ,J,K, 1, 0u.

Definition 2.3. We will define the sequent calculus for intuitionistic logic,
which was first introduced by Dyckhoff in [4].

Γ, pñ p At , Γ,K ñ ∆ LK

Γ, ϕ, ψ ñ ∆
L^

Γ, ϕ^ ψ ñ ∆

Γñ ϕ,∆ Γñ ψ,∆
R^

Γñ ϕ^ ψ,∆

Γ, ϕñ ∆ Γ, ψ ñ ∆
L_

Γ, ϕ_ ψ ñ ∆

Γñ ϕ, ψ
R_

Γñ ϕ_ ψ
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Γ, ϕñ ψ
RÑ

Γñ ϕÑ ψ

Γ, p, ψ ñ ∆
L1 ÑΓ, p, pÑ ψ ñ ∆

Γ, ϕÑ pψ Ñ γq ñ ∆
L2 ÑΓ, ϕ^ ψ Ñ γ ñ ∆

Γ, ϕÑ γ, ψ Ñ γ ñ ∆
L3 ÑΓ, ϕ_ ψ Ñ γ ñ ∆

Γ, ψ Ñ γ ñ ϕÑ ψ Γ, γ ñ ∆
L4 Ñ

Γ, pϕÑ ψq Ñ γ ñ ∆

where p is an atom. Structural rules and the cut rule are admissible in the
system and we have |∆| ď 1.

Definition 2.4. A calculus is terminating if for any sequent S, the number
of rules which are backward applicable to S are finite. Moreover, there is a
well-founded order on the sequents such that the order of the following are
less than the order of S:

˝ the premises of a rule whose conclusion is S;

˝ subsequents of S, and

˝ any sequent S 1 of the form pΓ,Π ñ ∆,Λq, where S is of the form
pΓ,lΠñ ∆,lΛq. Note that ΠY Λ must be non-empty.

Definition 2.5. Let L and L1 be two logics such that LL Ď LL1 . We say L1

is an extension of L if L $ A implies L1 $ A.

Definition 2.6. Let G and H be two sequent calculi such that LG Ď LH .
We say H is an extension of G if G $ Γ ñ ∆ implies H $ Γ ñ ∆. It is
called an axiomatic extension, if the provable sequents in G are considered
as axioms of H, to which H adds some rules.

Definition 2.7. Let G be a sequent calculus and L be a logic with the same
language as G’s. We say G is a sequent calculus for the logic L when:

G $ Γñ ∆ if and only if L $ p˚ΓÑ
Ř

∆q.

Note that if the calculus is single-conclusion, by
Ř

∆, we mean ∆ if ∆ is a
singleton, and 0 if ∆ is empty. Therefore, in this case we do not need the `
operator.

Theorem 2.8. Let L be a logic and G a single-conclusion (multi-conclusion)
sequent calculus for L. If L extends FLe (CFLe), then cut is admissible in
G.
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Proof. Assume that G $ Γñ A,∆ and G $ Γ1, Añ ∆1. Hence L $ ˚ΓÑ
A`p

Ř

∆q and L $ p˚Γ1q ˚AÑ p
Ř

∆1q. Since L extends FLe (CFLe) and
in this theory the formula

r˚ΓÑ A` p
ă

∆qs ˚ rp˚Γ1q ˚ AÑ p
ă

∆1qs

implies the formula

rp˚Γq ˚ p˚Γ1q Ñ p
ă

∆q ` p
ă

∆1qs

the last formula is provable in L which implies G $ Γ,Γ1 ñ ∆,∆1.

Definition 2.9. We say a logic L has Craig interpolation property if for
any formulas ϕ and ψ if L $ ϕ Ñ ψ, then there exists formula θ such that
L $ ϕÑ θ and L $ θ Ñ ψ and V pθq Ď V pϕq X V pψq.

Definition 2.10. We say a logic L has the uniform interpolation property if
for any formulas ϕ and any atomic formula p, there are two p-free formulas,
the p-pre-interpolant, @pϕ and the p-post-interpolant Dpϕ, such that

piq L $ @pϕÑ ϕ,

piiq For any p-free formula ψ if L $ ψ Ñ ϕ then L $ ψ Ñ @pϕ,

piiiq L $ ϕÑ Dpϕ, and

pivq For any p-free formula ψ if L $ ϕÑ ψ then L $ DpϕÑ ψ.

3 Semi-analytic Rules

In this section we will introduce a class of rules which we will investigate in
the rest of this paper. First let us begin with the single-conclusion case in
which all sequents have at most one succedent.

Definition 3.1. A rule is called a left semi-analytic rule if it is of the form

xxΠj, ψ̄js ñ θ̄jsysyj xxΓi, ϕ̄ir ñ ∆iyryi

Π1, ¨ ¨ ¨ ,Πm,Γ1, ¨ ¨ ¨ ,Γn, ϕñ ∆1, ¨ ¨ ¨ ,∆n

where Πj, Γi and ∆i’s are meta-multiset variables and

ď

i,r

V pϕ̄irq Y
ď

j,s

V pψ̄jsq Y
ď

j,s

V pθ̄jsq Ď V pϕq

and it is called a right semi-analytic rule if it is of the form
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xxΓi, ϕ̄ir ñ ψ̄iryryi

Γ1, ¨ ¨ ¨ ,Γn ñ ϕ

where Γi’s are meta-multiset variables and

ď

i,r

V pϕ̄irq Y
ď

i,r

V pψ̄irq Ď V pϕq

Moreover, a rule is called a context-sharing semi-analytic rule if it is of the
form

xxΓi, ψ̄is ñ θ̄isysyi xxΓi, ϕ̄ir ñ ∆iyryi

Γ1, ¨ ¨ ¨ ,Γn, ϕñ ∆1, ¨ ¨ ¨ ,∆n

where Γi and ∆i’s are meta-multiset variables and

ď

i,r

V pϕ̄irq Y
ď

i,s

V pψ̄isq Y
ď

i,s

V pθ̄isq Ď V pϕq

We will call the conditions for the variables in all the semi-analytic rules, the
occurrence preserving conditions. Note that in the left rule, for each i we
have |∆i| ď 1, and since the size of the succedent of the conclusion of the
rule must be at most 1, it means that at most one of ∆i’s can be non-empty.

For the multi-conclusion case, we define a rule to be left multi-conclusion
semi-analytic if it is of the form

xxΓi, ϕ̄ir ñ ψ̄ir,∆iyryi

Γ1, ¨ ¨ ¨ ,Γn, ϕñ ∆1, ¨ ¨ ¨ ,∆n

with the same occurrence preserving condition as above and the same con-
dition that Γi’s and ∆i’s are meta-multiset variables. A rule is defined to be
a right multi-conclusion semi-analytic rule if it is of the form

xxΓi, ϕ̄ir ñ ψ̄ir,∆iyryi

Γ1, ¨ ¨ ¨ ,Γn ñ ϕ,∆1, ¨ ¨ ¨ ,∆n

again with the similar occurrence preserving condition and the same condi-
tion that Γi’s and ∆i’s are meta-multiset variables. Whenever it is clear from
the context, we will omit the phrase “multi-conclusion”.

A rule is called modal semi-analytic if it has one of the following forms:

Γñ ϕ
K

lΓñ lϕ
Γñ

D
lΓñ
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where Γ is a meta-multiset variable. Note that we always have the condition
that whenever the rule pDq is present, the rule pKq must be present, as well.
In the case of the modal rules, we use the convention that lH “ H.

By the notation xx¨yryi we mean first considering the sequents ranging
over r and then ranging over i. For instance, xxΓi, ϕ̄ir ñ ψ̄iryryi is short for
the following set of sequents where 1 ď r ď mi and 1 ď i ď n:

Γ1, ϕ̄11 ñ ψ̄11, ¨ ¨ ¨ ,Γ1, ϕ̄1m1 ñ ψ̄1m1 ,

Γ2, ϕ̄21 ñ ψ̄21, ¨ ¨ ¨ ,Γ2, ϕ̄2m2 ñ ψ̄2m2 ,

...

Γn, ϕ̄n1 ñ ψ̄n1, ¨ ¨ ¨ ,Γn, ϕ̄nmn ñ ψ̄nmn .

xxΓi, ϕ̄ir ñ ∆iyryi and xxΠj, ψ̄js ñ θ̄jsysyj are defined similarly.

Both in the single-conclusion and multi-conclusion case, a rule is called
semi-analytic, if it is either a left semi-analytic rule, a right semi-analytic rule
or it is of the form of a semi-analytic modal rule. In all the semi-analytic rules,
the meta-variables and atomic constants occurring in the meta-formulas of
the premises of the rule, should also occur in the meta-formulas in the con-
sequence. Because of this condition, we call these rules semi-analytic. This
occurrence preserving condition is a weaker version of the analycity prop-
erty in the analytic rules, which demands the formulas in the premises to be
sub-formulas of the formulas in the consequence.

Example 3.2. A generic example of a left semi-analytic rule is the following:

Γ, ϕ1, ϕ2 ñ ψ Γ, θ ñ η Π, µ1, µ2, µ3 ñ ∆
Γ,Π, αñ ∆

where
V pϕ1, ϕ2, ψ, θ, η, µ1, µ2, µ3q Ď V pαq

and a generic example of a context-sharing left semi-analytic rule is:

Γ, θ ñ η Γ, µ1, µ2, µ3 ñ ∆
Γ, αñ ∆

where
V pθ, η, µ1, µ2, µ3q Ď V pαq

Moreover, for a generic example of a right semi-analytic rule we can have
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Γ, ϕñ ψ Γ, θ1, θ2 ñ η Π, µ1, µ2,ñ ν
Γ,Πñ α

where
V pϕ, ψ, θ1, θ2, η, µ1, µ2, νq Ď V pαq

Here are some remarks. First note that in any left semi-analytic rule there
are two types of premises; the type whose right hand-side includes meta-multi
variables and the type whose right hand-side includes meta-formulas. This
is a crucial point to consider. Any left semi-analytic rule allows any kind of
combination of sharing/combining contexts in any type. However, between
two types, we can only combine the contexts. The case in which we can share
the contexts of the two types is called context-sharing semi-analytic rule.
This should explain why our second example is called context-sharing left
semi-analytic while the first is not. The reason is the fact that the two types
share the same context in the second rule while in the first one this situation
happens in just one type. The second point is the presence of contexts. This
is very crucial for almost all the arguments in this paper, that any sequent
present in a semi-analytic rule should have meta-multiset variables as left
contexts and in the case of left rules, at least one meta-multiset variable for
the right hand-side must be present.

Example 3.3. Now for more concrete examples, note that all the usual
conjunction, disjunction and implication rules for IPC are semi-analytic.
The same also goes for all the rules in sub-structural logic FLe, the weakening
and the contraction rules and some of the well known restricted versions of
them including the following rules for exponentials in linear logic:

Γ, !ϕ, !ϕñ ∆

Γ, !ϕñ ∆
Γñ ∆

Γ, !ϕñ ∆

For a context-sharing semi-analytic rule, consider the following rule in
the Dyckhoff calculus for IPC (see [4]):

Γ, ψ Ñ γ ñ ϕÑ ψ Γ, γ ñ ∆

Γ, pϕÑ ψq Ñ γ ñ ∆

Example 3.4. For a concrete non-example consider the cut rule; it is not
semi-analytic because it does not preserve the variable occurrence condition.
Moreover, the following rule in the calculus of KC:

Γ, ϕñ ψ,∆

Γñ ϕÑ ψ,∆
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in which ∆ should consist of negation formulas is not a multi-conclusion
semi-analytic rule, simply because the context is not free for all possible
substitutions. The rule of thumb is that any rule in which we have side
conditions on the contexts is not semi-analytic.

Definition 3.5. A sequent is called a centered axiom if it has the following
form:

p1q Identity axiom: (ϕñ ϕ)

p2q Context-free right axiom: (ñ ᾱ)

p3q Context-free left axiom: (β̄ ñ)

p4q Contextual left axiom: (Γ, ϕ̄ñ ∆)

p5q Contextual right axiom: (Γñ ϕ̄,∆)

where in 2-5, the variables in any pair of elements in ᾱ, β̄, ϕ̄ are equal and Γ
and ∆ are meta-multiset variables. A sequent is called context-free centered
axiom if it has the form p1q, p2q or p3q.

Example 3.6. It is easy to see that the axioms given in the preliminaries
are examples of centered axioms. Here are some more examples:

␣1ñ , ñ ␣0

ϕ,␣ϕñ , ñ ϕ,␣ϕ

Γ,␣J ñ ∆ , Γñ ∆,␣K

where the first four are context-free while the last two are contextual.

4 Uniform Interpolation

In this section we will generalize the investigations of [8] to also cover the sub-
structural setting and semi-analytic rules. We will show that any extension
of a sequent calculus by semi-analytic rules preserves uniform interpolation if
the resulted system turns out to be terminating. Our method here is similar
to the method used in [8].

As a first step, let us generalize the notion of uniform interpolation from
logics to sequent calculi. The following definition offers three versions of such
a generalization, each of which suitable for different forms of rules.
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Definition 4.1. Let G and H be two sequent calculi. G has H-uniform
interpolation if for any sequent S and T where T s “ H and any atom p,
there exist p-free formulas IpSq and JpT q such that

piq S ¨ pIpSq ñq is derivable in H.

piiq For any p-free multiset Γ, if S ¨ pΓñq is derivable in G then Γñ IpSq
is derivable in H.

piiiq T ¨ pñ JpT qq is derivable in H.

pivq For any p-free multisets Γ and ∆, if T ¨ pΓñ ∆q is derivable in G then
JpT q,Γñ ∆ is derivable in H.

Similarly, we say G has weak H-uniform interpolation if instead of piiq we
have

pii1q For any p-free multiset Γ, if S ¨ pΓñq is derivable in G then JpS̃q,Γñ
IpSq is derivable in H where S̃ “ pSa ñq.

We say G has strong H-uniform interpolation if instead of piiq we have

pii2q For any p-free multisets Γ and ∆, if S ¨ pΓñ ∆q is derivable in G then
Γñ IpSq,∆ is derivable in H.

Note that in the case of the strong uniform interpolation, T s can be non-
empty, and we have multi-conclusion rules.

We call IpSq a left p-interpolant (weak p-interpolant, strong p-interpolant)
of S and JpT q a right p-interpolant (weak right p-interpolant, strong right p-
interpolant) of T in G relative to H. The system H has unifrom interpolation
property (weak unifrom interpolation property, strong unifrom interpolation
property) if it has H-uniform interpolation (weak H-uniform interpolation,
strong H-uniform interpolation).

Theorem 4.2. If G is a sequent calculus with (weak/strong) uniform inter-
polation and complete for a logic L extending (FLe/CFLe) FLe, L has the
uniform interpolation property.

Proof. First note that since G is complete for L, L $ ϕÑ ψ iff G $ ϕñ ψ.
Hence we can rewrite the definition of the uniform interpolation using the
sequent system G. Now pick S “ pñ Aq. By uniform interpolation property
of G, there is a p-free formula IpSq such that S ¨ pIpSq ñq and for any
p-free Σ if S ¨ pΣ ñq, then Σ ñ IpSq. It is clear that IpSq works as the
p-pre-interpolant of A, because firstly IpSq ñ A and secondly if B ñ A
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then B ñ IpSq for any p-free B. The same argument also works for the
p-post-interpolant. In the case of weak uniform interpolation, first note that
by definition if T “ pñq then pñ JpT qq. Secondly, note that since G is
complete for L, the calculus should admit the cut rule by Theorem 2.8. Now
we claim that IpSq works again. The reason now is that if B ñ A for a p-free
B, then JpS̃q, B ñ IpSq. Since S̃ “ T and we have the cut rule, B ñ A. The
case for strong uniform interpolation is similar to the interpolation case.

In the following theorem, we will check the uniform interpolation property
for a set of centered axioms. It can also be considered as an example to show
how this notion works in practice.

Theorem 4.3. Let G and H be two sequent calculi such that every provable
sequent in G is also provable in H and G consists only of finite centered
axioms. Then:

piq If H extends FLe, then G has H-uniform interpolation.

piiq If H extends FLe and has the left weakening rule, then G has weak
H-uniform interpolation.

piiiq If both G and H are multi-conclusion and H extends CFLe, then G
has strong H-uniform interpolation.

Proof. To prove part piq of the theorem, we have to find IpSq and JpT q for
given sequents S “ pΣ ñ Λq and T “ pΠ ñq such that the four conditions
in the Definition 4.1 hold. We will denote our IpSq and JpT q by @pS and
DpT , respectively.

First, we will prove piq and we will investigate the case DpT , first. For
that purpose, define DpT as the following

rp˚Πpq ˚ Js ^ 0^K

where Πp is the subset of Π consisting of all p-free formulas and by ˚Πp we
mean ϕ1 ˚ ¨ ¨ ¨ ˚ ϕk, where tϕ1, ¨ ¨ ¨ , ϕku “ Πp. Note that J appears in the
first conjunct only when Π ´ Πp is non-empty. Moreover, 0 only appears as
a conjunct when T is of the form axiom 3 (which is β̄ ñ) and β̄ “ Π, and
K only appears as a conjunction when T is of the form of axiom 4 (which is
Σ, ϕ̄ñ Λ) and we have ϕ̄ Ď Π.

First, we have to show that Π ñ DpT holds in H. Note that Π is of
the form Πp Y pΠ ´ Πpq. By definition, for every ψ P Πp we have ψ ñ ψ
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and hence using the rule pR˚q we have Πp ñ ˚Πp holds in H (note that
since H extends FLe, it has the rule pR˚q). On the other hand, using the
axiom for J we have Π ´ Πp ñ J and then using the rule pR˚q we have
Πp,Π´ Πp ñ p˚Πpq ˚ J, which is Πñ p˚Πpq ˚ J.

The formula 0 appears as a conjunct when T is of the form axiom 3 and
β̄ “ Π, which means that in this case Π ñ is an instance of axiom 3 and it
holds in H. Hence, using the rule pR0q we have Πñ 0.

The formula K appears as a conjunct when T is of the form axiom 4 and
ϕ̄ Ď Π. Hence, Πñ K is an instance of axiom 4 when we let ∆ to be K.

Now, we have to show that if for p-free sequents C̄ and D̄ if Π, C̄ ñ D̄ is
provable in G, then DpT, C̄ ñ D̄ is provable in H. Therefore, Π, C̄ ñ D̄ is
of the form of one of the centered axioms and we have five cases to consider:

p1q If Π, C̄ ñ D̄ is of the form of the axiom ϕ ñ ϕ. Then, since D̄ “ ϕ,
it means that ϕ is p-free. There are two cases; first, if Π “ ϕ and
C̄ “ H, then ˚Πp “ ϕ and since Π´Πp “ H, we do not have J in the
conjunct. Hence, Π ñ ϕ and using the rule pL^q we have DpT ñ D̄.
Second, if Π “ H and C̄ “ ϕ, then ˚Πp “ 1 and since Π ´ Πp “ H,
then J does not appear in the first conjunct in the definition of DpT .
Hence, since C̄ ñ D̄ is equal to ϕ ñ ϕ and this is of the form of the
axiom 1, using the rule pL1q we have 1, ϕñ ϕ and using pL^q we have
DpT, C̄ ñ D̄.

p2q If Π, C̄ ñ D̄ is of the form of the axiom ñ ᾱ. Then, since D̄ “ ᾱ, it
means that ᾱ is p-free and Π “ C̄ “ H. Hence, like the above case
˚Πp “ 1 and we do not have J in the definition, either. Again, using
the rule pL1q we have 1ñ ᾱ and by pL^q we have DpT ñ ᾱ.

p3q If Π, C̄ ñ D̄ is of the form of the axiom pβ̄ ñq. Then there are two
cases; first if β̄ “ Π, then we must have 0 as one of the conjuncts in
the definition of DpT . We have C̄ “ D̄ “ H and 0ñ is an axiom in H
and using the rule pL^q we have DpT ñ. Second, if Π Ĺ β̄, since we
have β̄ “ Π, C̄ and C̄ is p-free, and we have this condition that for any
two formulas in β̄ they have the same variables, we have Π is p-free,
as well, which means every formula in Π is p-free and Π “ Πp and J
does not appear in the definition of DpT . Hence, using the rule pL˚q on
Π, C̄ ñ, we have ˚Πp, C̄ ñ and by the rule pL^q we have DpT, C̄ ñ.

p4q If Π, C̄ ñ D̄ is of the form of the axiom Γ, ϕ̄ ñ ∆, then there are
two cases; first if ϕ̄ Ď Π, then by definition of DpT , K is one of the
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conjuncts. Therefore, since K, C̄ ñ D̄ is an instance of an axiom in H,
using the rule pL^q we have DpT, C̄ ñ D̄ is derivable in H. Second,
if ϕ̄ Ę Π, then at least one of the elements in ϕ̄ is in C̄ and hence it
is p-free. Therefore, by the condition that for any two formulas in ϕ̄
they have the same variables, ϕ̄ is p-free. Hence, there can not be any
element of ϕ̄ present in Π ´ Πp and hence ϕ̄ Ď Πp, C̄. Therefore, we
have Πp, C̄ ñ D̄ because it is of the form of the axiom Γ, ϕ̄ ñ ∆ of
G and hence it is provable in H. Therefore, using the axiom pL˚q we
have p˚Πpq ˚ J, C̄ ñ D̄ and by pL^q, DpT, C̄ ñ D̄. (Note that it is
possible that Π ´ Πp is empty. It is easy to show that in this case the
claim also holds. It is enough to drop J in the last part of the proof.)

p5q Consider the case where Π, C̄ ñ D̄ is of the form of the axiom Γ ñ
ϕ̄,∆. Then, since ϕ̄ Ď D̄, we have DpT, C̄ ñ D̄ is an instance of the
same axiom Γñ ϕ̄,∆ when we substitute Γ by DpT, C̄.

Now, we will investigate the case @pS for S of the form Σñ Λ. Define @pS
as the following

rp˚Σp Ñ Kqs _ r˚pβ̄ ´ Σqs _ ϕ_ 1_J

where in the first disjunct, Σp means the p-free part of Σ, the second disjunct
appears whenever there exists an instance of an axiom of the form p3q in G
where Σ Ď β̄, Λ “ H and β̄ is p-free. The third disjunct appears if Σ “ H
and Λ “ ϕ where ϕ is p-free. The fourth disjunct appears if Σ ñ Λ equals
to one of the instances of the axiom p1q, p2q, or p3q in G. And finally, the
fifth disjunct appears when ϕ̄ Ď Σ for an instance of ϕ̄ in axiom p4q in G or
ϕ̄ Ď Λ for an instance of ϕ̄ in axiom p5q in G.

First we have to show that Σ,@pS ñ Λ. For this purpose, we have to
prove that for any possible disjunct X, we have Σ, X ñ Λ. For the first
disjunct note that Σp ñ ˚Σp and Σ´Σp,K ñ Λ. Hence, Σ, p˚Σp Ñ Kq ñ

Λ.
For the second disjucnt, we have Σ Ď β̄ and Λ “ H. Therefore

Σ,˚pβ̄ ´ Σq ñ Λ

by the axiom p3q itself. For the third disjunct, note that Σ “ H and Λ “ ϕ
where ϕ is p-free. Hence Σ, ϕ ñ Λ by axiom p1q. For the fourth disjunct,
note that Σñ Λ is an axiom itself and hence Σ, 1ñ Λ. Finally, for the fifth
disjunct, note that Σñ Λ is an instance of the axioms p4q or p5q which means
if we also add J to the left hand-side of the sequent, it remains provable.
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Now we have to prove that if Σ, C̄ ñ Λ then C̄ ñ @pS. For this purpose,
we will check all possible axiomatic forms for Σ, C̄ ñ Λ.

p1q If Σ, C̄ ñ Λ is an instance of the axiom p1q, there are two possible
cases. First if Σ “ H and C̄ “ ϕ and Λ “ ϕ. Then ϕ will be p-free and
hence ϕ appears in @pS as a disjunct. Since C̄ ñ ϕ, we have C̄ ñ @pS.
For the second case, if Σ “ ϕ and C̄ “ H then Σ ñ Λ is an instance
of the axiom p1q which means that 1 is a disjunct in @pS. Since pñ 1q
and C̄ “ H we have C̄ ñ @pS.

p2q If Σ, C̄ ñ Λ is an instance of the axiom p2q. Then Σ “ C̄ “ H and
Λ “ ᾱ. Therefore, 1 is a disjunct in @pS and since C̄ “ H we have
C̄ ñ @pS.

p3q If Σ, C̄ ñ Λ is an instance of the axiom p3q. Then there are two cases
to consider. First if Σ “ β̄. Then C̄ “ H and Λ “ H. By definition, 1
is a disjunct in @pS and again like the previous cases C̄ ñ @pS. Second
if Σ Ĺ β̄. Then β̄ X C̄ is non-empty. Pick ψ P β̄ X C̄. ψ is p-free, since
any pair of the elements in β̄ have the same variables, β̄ is p-free. Now
by definition, ˚pβ̄´Σq is a disjunct in @pS. Since C̄ “ β´Σ, we have
C̄ ñ @pS.

p4q If Σ, C̄ ñ Λ is an instance of the axiom p4q. Similar to the previous
case, there are two cases. If ϕ̄ Ď Σ, then by definition J is a disjunct in
@pS and there is nothing to prove. In the second case, at least one the
elements of ϕ is in C̄ and hence p-free. Since any pair of the elements
in ϕ̄ have the same variables, ϕ̄ is p-free. We can partition Σ, C̄ to
Σp, C̄, pΣ´Σpq. Since every element of pΣ´Σpq has p, and ϕ̄ is p-free,
the whole ϕ should belong to Σp, C̄. Therefore, by the axiom p4q itself,
Σp, C̄ ñ K which implies C̄ ñ p˚Σp Ñ Kq. By definition p˚Σpq Ñ K

is a disjunct in @pS and hence C̄ ñ @pS.

p5q If Σ, C̄ ñ Λ is an instance of the axiom p5q. Then ϕ̄ Ď Λ. By definition
J is a disjunct in @pS and therefore, there is nothing to prove.

For piiq, note that using the part piq we have formulas DpT and @pS for
any sequents S and T (T s “ H) with the conditions of H-uniform inter-
polation. The conditions for the weak H-uniform interpolation is the same
except for the second part of the left weak p-interpolant which demands that
if Σ, C̄ ñ Λ, then DpS̃, C̄ ñ @pS. If we use the same uniform interpolants,
we satisfy all the conditions of weak H-uniform interpolation. The reason is
that except the mentioned condition, all of the others are the same as the
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conditions for H-interpolation and for the other condition, we can argue as
follows: By Σ, C̄ ñ Λ, we have C̄ ñ @pS and by the left weakening rule we
will have DpS̃, C̄ ñ @pS.

For piiiq, first note that proving the existence of the right interpolants is
enough. It is sufficient to define @pS “ ␣DpS and using the assumption that
CFLe is admissible in H to reduce the conditions of @pS to DpS. Now define
DpS for any S “ pΣñ Λq as:

rp˚Σpq ˚ Js ^ r␣pK ` p
ă

Λpqqs ^ 0^ K

where by ˚Σp we mean ψ1 ˚ ¨ ¨ ¨ ˚ ψr, where tψ1, ¨ ¨ ¨ , ψru “ Πp and
Ř

Λp is
defined similarly. Note that in rp˚Σpq˚Js the formula J appears iff Σ ‰ Σp,
and K appears in the second conjunct iff Λ ‰ Λp. The third conjunct appears
if Σ ñ Λ is an instance of an axiom of the forms p1q, p2q and p3q in G and
the fourth conjunct appears if Σñ Λ is an instance of an axiom of the forms
p4q, p5q in G.

First, we have to show that Σ ñ DpS,Λ. For that purpose, we have to
check that for any conjunct X we have Σ ñ X,Λ. For the first conjunct, if
Σ ‰ Σp then note that Σp ñ ˚Σp and Σ´ Σp ñ J,Λ therefore

Σñ rp˚Σpq ˚ Js,Λ

If Σ “ Σp, then there is no need for J and the claim is clear by Σ ñ ˚Σp.
For the second conjunct, if Λ ‰ Λp note that

Ř

Λp ñ Λp and Σ,K ñ Λ´Λp,
hence

Σ, rK ` p
ă

Λpqs ñ Λ

hence
Σñ r␣pK ` p

ă

Λpqqs,Λ

If Λ “ Λp, similar to the case before, there is no need for K.

The cases for the third and the fourth conjuncts are similar to the similar
cases in the proof of piq.

Now we want to prove that if Σ, C̄ ñ Λ, D̄, then DpS, C̄ ñ D̄. For this
purpose, we will check all the cases one by one:

p1q If Σ, C̄ ñ Λ, D̄ is an instance of the axiom p1q, we have four cases to
check.
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‚ If ϕ P C̄ and ϕ P D̄, then Σ “ Λ “ H and C̄ “ D̄ “ ϕ. Hence
˚Σp “ 1. Therefore, since 1, C̄ ñ D̄ we have DpS, C̄ ñ D̄.

‚ If ϕ P C̄ and ϕ R D̄ then Σ “ H and Λ “ ϕ. Therefore, ϕ is
p-free and hence Λp “ ϕ. Since D̄ “ H and Λ “ ϕ, we have
,␣ϕ, C̄ ñ D̄. Therefore, ␣p

Ř

Λpq, C̄ ñ D̄.

‚ If ϕ R C̄ and ϕ P D̄. This case is similar to the previous case.

‚ If ϕ R C̄ and ϕ R D̄ then Σ “ Λ “ ϕ and C̄ “ D̄ “ H. Hence,
by definition, we have 0 as a conjunct in DpS. Since 0ñ, we will
have DpS, C̄ ñ D̄.

p2q If Σ, C̄ ñ Λ, D̄ is an instance of the axiom p2q. Then Σ “ C̄ “ H.
There are two cases to consider. If Λ “ ᾱ. Then by definition 0 appears
in DpS. Since D̄ “ H and p0ñq we have C̄, DpS ñ D̄. If Λ Ĺ ᾱ, then
D̄X ᾱ is non empty. Therefore, there exists a p-free formula in ᾱ. Since
the variables of any pair in ᾱ are equal, ᾱ is p-free. Therefore, Λ Ď ᾱ is
p-free, hence Λ “ Λp (and K does not appear in the second conjunct).
Since pñ Λ, D̄q, we have pñ

Ř

Λ, D̄q therefore p␣p
Ř

Λpq ñ D̄q which
implies pDpS ñ D̄q.

p3q If Σ, C̄ ñ Λ, D̄ is an instance of the axiom p3q. This case is similar to
the previous case p2q.

p4q If Σ, C̄ ñ Λ, D̄ is an instance of the axiom p4q. There are two cases
to consider. If ϕ̄ Ď Σ. Then by definition K is a conjunct in DpS and
therefore there is nothing to prove. For the second case, if ϕ̄ Ę Σ, then
ϕ̄X C̄ is non-empty. Hence, ϕ̄ has a p-free element. Since the variables
of any pair in ϕ̄ are equal, ϕ̄ is p-free. Since ϕ̄ Ď Σp, C̄,Σ´Σp and ϕ̄ is
p-free, we should have ϕ̄ Ď Σp, C̄. Therefore, if Σ ‰ Σp, by the axiom
p4q itself, J,Σp, C̄ ñ D̄. Since p˚Σpq ˚ J is a conjunct in DpS, we will
have DpS, C̄ ñ D̄. Note that if Σ “ Σp, then we will use Σp, C̄ ñ D̄
instead of J,Σp, C̄ ñ D̄.

p5q If Σ, C̄ ñ Λ, D̄ is an instance of the axiom p5q. This case is similar to
the previous case 4.

4.1 The Single-conclusion Case

In this section, we assume that for any sequent S “ Γñ ∆ we have |∆| ď 1.
We will show how the single-conclusion semi-analytic and context-sharing

21



semi-analytic rules preserve the uniform interpolation property. For this
purpose, we will investigate these two kinds of rules separately. First we
will study the semi-analytic rules and then we will show in the presence
of weakening and context-sharing implication rules, we can also handle the
context-sharing semi-analytic rules.

4.1.1 Semi-analytic Case

Let us begin right away with the following theorem which is one of the main
theorems of this paper.

Theorem 4.4. Let G and H be two sequent calculi and H extends FLe.
If H is a terminating sequent calculus axiomatically extending G with only
semi-analytic rules, then if G has H-uniform interpolation property, then so
does H.

Proof. For any sequent U and V where V s “ H and any atom p, we define
two p-free formulas, denoted by @pU and DpV and we will prove that they
meet the conditions for the left and the right p-interpolants of U and V , re-
spectively. We define them simultaneously and the definition uses recursion
on the rank of sequents which is specified by the terminating condition of
the sequent calculus H.

If V is the empty sequent we define DpV as 1 and otherwise, we define
DpV as the following

p
ľ

par

˚
i
DpSiq^p

ľ

LR
rp˚

j

ľ

s

@pTjsq˚p˚
i‰1

ľ

r

@pSirq Ñ
ł

r

DpS1rsq^plDpV
1q^pDGpV q.

In the first conjunct, the conjunction is over all non-trivial partitions of
V “ S1 ¨ ¨ ¨ ¨ ¨Sn and i ranges over the number of Si’s, in this case 1 ď i ď n.
In the second conjunct, the first big conjunction is over all left semi-analytic
rules that are backward applicable to V in H. Since H is terminating,
there are finitely many of such rules. The premises of the rule are xxTjsysyj,
xxSiryryi‰1 and xS1ry and the conclusion is V , where Tjs “ pΠj, ψ̄js ñ θ̄jsq
and Sir “ pΓi, ϕ̄ir ñ ∆iq which means that Sir’s are those who have context
in the right side of the sequents (∆i) in the premises of the left semi-analytic
rule. (Note that picking the block xS1ry is arbitrary and we include all con-
juncts related to any choice of xS1ry.) The conjunct lDpV 1 appears in the
definition whenever V is of the form plΓñq and we consider V 1 to be pΓñq.
And finally, since G has the H-uniform interpolation property, by definition
there exists JpV q as right p-interpolant of V . We choose one such JpV q and
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denote it as DGpV and include it in the definition.

If U is the empty sequent define @pU as 0. Otherwise, define @pU as the
following

p
ł

par

p˚
i‰1
DpSi Ñ @pS1qq _ p

ł

LR
rp˚

j

ľ

s

@pTjsq ˚ p˚
i

ľ

r

@pSirqsq

_p
ł

RR
p˚
i

ľ

r

@pSirqq _ pl@pU
1q _ p@GpUq.

In the first disjunct, the big disjunction is over all partitions of U “ S1¨ ¨ ¨ ¨ ¨Sn

such that for each i ‰ 1 we have Ss
i “ H and S1 ‰ U . (Note that in this

case, if Ss “ H it may be possible that for one i ‰ 1 we have Si “ U . Then
the first disjunct of the definition must be DpU Ñ @pS1 where @pS1 “ 0.
But this does not make any problem, since the definition of DpU is prior to
the definition of @pU .) In the second disjunct, the big disjunction is over all
left semi-analytic rules that are backward applicable to U in H. Since H is
terminating, there are finitely many of such rules. The premises of the rule
are xxTjsysyj and xxSiryryi and the conclusion is U . In the third disjunct, the
big disjunction is over all right semi-analytic rules backward applicable to
U in H. The premise of the rule is xxSiryryi and the conclusion is U . The
fourth disjunct is on all semi-analytic modal rules with the result U and the
premise U 1. And finally, since G has the H-uniform interpolation property,
by definition there exists IpUq as left p-interpolant of U . We choose one such
IpUq and denote it as @GpU and include it in the definition.

To prove the theorem we use induction on the order of the sequents and
we prove both cases @pU and DpV simultaneously. First we have to show
that

piq V ¨ pñ DpV q is derivable in H.

piiq U ¨ p@pU ñq is derivable in H.

We show them using induction on the order of the sequents U and V . When
proving piq, we assume that piq holds for sequents whose succedents are empty
and with order less than the order of V and piiq holds for any sequent with
order less than the order of V . We have the same condition for U when
proving piiq.

To prove piq, note that if V is the empty sequent, then by definition
DpV “ 1 and hence piq holds. For the rest, we have to show that V ¨ pñ Xq
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is derivable in H for any X that is one of the conjuncts in the definition of
DpV . Then, using the rule pR^q it follows that V ¨ pñ DpV q. Since V is of
the form Γñ, we have to show Γñ X is derivable in H.

˝ In the case that the conjunct is p
Ź

par

˚
i
DpSiq, we have to show that for

any non-trivial partition S1 ¨ ¨ ¨ ¨ ¨ Sn of V we have Γ ñ ˚
i
DpSi is

derivable in H. Since the order of each Si is less than the order of

V and Ss
i “ pΓi ñq for 1 ď i ď n where

n
Ť

i“1

Γi “ Γ, we can use the

induction hypothesis and we have Γi ñ DpSi. Using the right rule for
p˚q we have Γ1, ¨ ¨ ¨ ,Γn ñ ˚

i
DpSi which is Γñ ˚

i
DpSi.

˝ For the second conjunct in the definition of DpV , we have to check that
for every left semi-analytic rule we have

V ¨ pñ rp˚
j

ľ

s

@pTjsq ˚ p˚
i‰1

ľ

r

@pSirq Ñ
ł

r

DpS1rsq.

is derivable in H. Therefore, V is the conclusion of a left semi-analytic
rule such that the premises are xxTjsysyj, xxSiryryi and xS1ryr and hence
the order of all of them are less than the order of V . We can easily see
that the claim holds since by induction hypothesis we can add @pTjs
and @pSir to the left side of the sequents Tjs and Sir for i ‰ 1. And
again by induction hypothesis we can add DpS1r to the right side of the
sequents S1r. Then using the rules L^, L˚ and R_ the claim follows.
What we have said so far can be seen precisely in the following:

Note that xxTjsysyj is of the form xxΠj, ψ̄js ñ θ̄jsysyj and xxSiryryi is of
the form xxΓi, ϕ̄ir ñyryi and V is of the form

Π1, ¨ ¨ ¨ ,Πm,Γ1, ¨ ¨ ¨ ,Γn, ϕñ

Using induction hypothesis we have for every 1 ď j ď m

pΠj, @pTj1, ψ̄j1 ñ θ̄j1q, ¨ ¨ ¨ , pΠj,@pTjs, ψ̄js ñ θ̄jsq, ¨ ¨ ¨

for every 1 ă i ď n we have

pΓi,@pSi1, ϕ̄i1 ñq, ¨ ¨ ¨ , pΓi,@pSir, ϕ̄ir ñq, ¨ ¨ ¨

and for i “ 1 we have

pΓ1, ϕ̄11 ñ DpS11q, ¨ ¨ ¨ , pΓ1, ϕ̄1r ñ DpS1rq, ¨ ¨ ¨
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Hence, using the rule pL^q, for every 1 ď j ď m we have

pΠj,
ľ

s

@pTjs, ψ̄j1 ñ θ̄j1q, ¨ ¨ ¨ , pΠj,
ľ

s

@pTjs, ψ̄js ñ θ̄jsq, ¨ ¨ ¨

and for every 1 ă i ď n we have

pΓi,
ľ

r

@pSir, ϕ̄i1 ñq, ¨ ¨ ¨ pΓi,
ľ

r

@pSir, ϕ̄ir ñq, ¨ ¨ ¨

and using the rule pR_q, for i “ 1 we have

pΓ1, ϕ̄11 ñ
ł

r

DpS1rq, ¨ ¨ ¨ , pΓ1, ϕ̄1r ñ
ł

r

DpS1rq ¨ ¨ ¨

Substituting all these three in the original left semi-analytic rule (we
can do this, since in the original rule, there are contexts, ∆i’s in the
right hand side of the sequents S1

irs), we conclude

Π,Γ, ϕ, x
ľ

s

@pTjsyj, x
ľ

r

@pSiryi‰1 ñ
ł

r

DpS1r.

where Π “ Π1, ¨ ¨ ¨ ,Πm, Γ “ Γ1, ¨ ¨ ¨ ,Γn, x
Ź

s

@pTjsyj “
Ź

s

@pT1s, ¨ ¨ ¨ ,
Ź

s

@pTms

and x
Ź

r

@pSiryi‰1 “
Ź

r

@pS2r, ¨ ¨ ¨ ,
Ź

r

@pSnr.

Now, using the rule pL˚q we have

Π,Γ, ϕ, p˚
j

ľ

s

@pTjsq ˚ p˚
i‰1

ľ

r

@pSirq ñ
ł

r

DpS1r.

And finally, using the rule RÑ we conclude

Π,Γ, ϕñ rp˚
j

ľ

s

@pTjsq ˚ p˚
i‰1

ľ

r

@pSirq Ñ
ł

r

DpS1rs.

˝ Consider the conjunct lDpT 1. In this case, T must have been of the
form plΓ ñq and T 1 of the form pΓ ñq. By definition, the order of
T 1 is less than the order of T . Hence, by induction hypothesis we have
T 1 ¨ pñ DpT 1q or in other words Γñ DpT 1. Now, we use the rule K and
we have lΓñ lDpT 1 which means T ¨ pñ lDpT 1q.

˝ The last case is DGpV . We have to show V ¨ pñ DGpV q is provable
in H which is the case since G has H-uniform interpolation property
and by Definition 4.1 part piiiq there exists p-free formula J such that
V ¨ pñ Jq is derivable in H. We chose one such J and call it DGpV ,
hence V ¨ pñ DGpV q in H by definition.
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To prove piiq, note that if U is the empty sequent, then by definition
@pU “ 0 and hence piiq holds. For the rest, we have to show that U ¨ pX ñq

is derivable in H for any X that is one of the disjuncts in the definition of
@pU . Then, using the rule pL_q it follows that U ¨ p@pU ñq. Since U is of
the form Γñ ∆, we have to show Γ, X ñ ∆ is derivable in H.

˝ In the case that the disjunct is p
Ž

par

p˚
i‰1
DpSi Ñ @pS1qq we have to prove

that for any partitions of U “ S1 ¨ ¨ ¨ ¨ ¨ Sn such that Ss
i “ H for each

i ‰ 1 and S1 ‰ U , we have U ¨ pp˚
i‰1
DpSi Ñ @pS1q ñq. First, consider

the case that non of Si’s are equal to U (or in other words, Ss ‰ H);
then the order of each Si is less than the order of S and we can use the
induction hypothesis. Since for i ‰ 1 the succedent of each Si is empty,
we have Si “ pΓi ñq and pΓi ñ DpSiq and using the rule R˚ we have
pΓ2, ¨ ¨ ¨ ,Γn ñ ˚

i‰1
DpSiq. And for S1 “ Γ1 ñ ∆ we have Γ1, @pS1 ñ ∆.

Hence using the rule LÑ we conclude

Γ1, ¨ ¨ ¨ ,Γn, ˚
i‰1
DpSi Ñ @pS1 ñ ∆

and the claim follows.
In the case that U s “ H, it is possible that for i ‰ 1, one of Si’s is equal
to U . In this case what appears in the definition of @pU is DpU Ñ @pS1

which is equivalent to DpU Ñ 0. But, we can do this, since we defined
DpU prior to the definition of @pU and we have proved U ¨ pñ DpUq
prior to the case that we are checking now.

˝ In the case that the disjunct is p
Ž

LR
rp˚

j

Ź

s

@pTjsq˚p˚
i

Ź

r

@pSirqsq, we have

to prove that for any left semi-analytic rule that is backward applicable
to U in H we have U ¨ pp˚

j

Ź

s

@pTjsq ˚ p˚
i

Ź

r

@pSirq ñq. The premises

of the rule are xxTjsysyj and xxSiryryi and the conclusion is U . Since
the orders of all Tjs’s and Sir’s are less than the order of U we can use
the induction hypothesis and have Tjs ¨ p@pTjs ñq and Sir ¨ p@pSir ñq.
Using the rule pL^q for context sharing sequents (when j is fixed and i
is fixed we have context sharing sequents) and then using the rule pL˚q
for non context sharing sequents (when s and r are fixed and we are
ranging over j and i) and then applying the same left rule we can prove
the claim. The proof is similar to the second case of piq and precisely
it goes as the following: Using induction hypothesis we have for every
1 ď j ď m

pΠj, @pTj1, ψ̄j1 ñ θ̄j1q, ¨ ¨ ¨ , pΠj,@pTjs, ψ̄js ñ θ̄jsq, ¨ ¨ ¨
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and for every 1 ď i ď n we have

pΓi, @pSi1, ϕ̄i1 ñ ∆iq, ¨ ¨ ¨ , pΓi,@pSir, ϕ̄ir ñ ∆iq, ¨ ¨ ¨

Hence, using the rule pL^q, for every 1 ď j ď m we have

pΠj,
ľ

s

@pTjs, ψ̄j1 ñ θ̄j1q, ¨ ¨ ¨ , pΠj,
ľ

s

@pTjs, ψ̄js ñ θ̄jsq, ¨ ¨ ¨

and for every 1 ď i ď n we have

pΓi,
ľ

r

@pSir, ϕ̄i1 ñ ∆iq, ¨ ¨ ¨ , pΓi,
ľ

r

@pSir, ϕ̄ir ñ ∆iq, ¨ ¨ ¨

Substituting these two in the original left semi-analytic rule, we con-
clude

Π,Γ, ϕ, x
ľ

s

@pTjsyj, x
ľ

r

@pSiryi ñ ∆,

and using the rule pL˚q we have

Π,Γ, ϕ, p˚
j

ľ

s

@pTjsq ˚ p˚
i

ľ

r

@pSirq ñ ∆.

˝ In the case that the disjunt is p
Ž

RR
p˚
i

Ź

r

@pSirqq, we have to prove that

for any right semi-analytic rule backward applicable to U in H, we have
U ¨ p˚

i

Ź

r

@pSir ñq. In this case the premises of the rule are xxSiryryi,

where Sir “ pΓi, ϕ̄ir ñ ψ̄irq and the conclusion is U “ pΓ1, ¨ ¨ ¨ ,Γn ñ

ϕq. Since the order of each Sir is less than the order of S, we can use
the induction hypothesis and for every 1 ď i ď n we have

pΓi, @pSi1, ϕ̄i1 ñ ψ̄i1q, ¨ ¨ ¨ , pΓi,@pSir, ϕ̄ir ñ ψ̄irq, ¨ ¨ ¨

Using the rule L^ we have

pΓi,
ľ

r

@pSir, ϕ̄i1 ñ ψ̄i1q, ¨ ¨ ¨ , pΓi,
ľ

r

@pSir, ϕ̄ir ñ ψ̄irq, ¨ ¨ ¨

and substituting it in the original right rule, we conclude

Γ, x
ľ

r

@pSiryi ñ ϕ,

and using the rule pL˚q we have

Γ,˚
i

ľ

r

@pSir ñ ϕ.
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˝ For the case that the disjunct is l@pU 1 we have that U is the conclusion
of a semi-analytic modal rule and the premise is U 1. Hence, U is of the
form plΓ ñ l∆q and U 1 is of the form pΓ ñ ∆q. Since the order
of U 1 is less than the order of U , we can use the induction hypothesis
and we have pΓ, @pU 1 ñ ∆q. Now, using the rule K we can conclude
plΓ,l@pU 1 ñ l∆q which is equivalent to U ¨ pl@pU 1 ñq.

˝ And finally, for the case that the disjunct is @GpU we have to show
that U ¨ p@GpU ñq holds in H, which does since G has H-uniform
interpolation property and by Definition 4.1 part piq there exists p-free
formula I such that U ¨ pI ñq is derivable in H. We choose one such I
and call it @GpU and hence we have U ¨ p@GpU ñq in H by definition.

So far we have proved piq and piiq. We want to show that H has H-
uniform interpolation. Therefore, based on the Definition 4.1, we have to
prove the following, as well:

piiiq For any p-free multisets C̄ and D̄, if V ¨ pC̄ ñ D̄q is derivable G then
DpV, C̄ ñ D̄ is derivable in H, where C̄ “ C1, ¨ ¨ ¨ , Ck and |D̄| ď 1.

pivq For any p-free multiset C̄, if U ¨ pC̄ ñq is derivable in G then C̄ ñ @pU
is derivable in H, where C̄ “ C1, ¨ ¨ ¨ , Ck.

Recall that V is of the form pΓ ñq and U is of the form pΓ ñ ∆q. We will
prove piiiq and pivq simultaneously using induction on the length of the proof
and induction on the order of U and V . More precisely, first by induction on
the order of U and V and then inside it, by induction on n, we will show:

‚ For any p-free multisets C̄ and D̄, if V ¨ pC̄ ñ D̄q has a proof in G with
length less than or equal to n, then DpV, C̄ ñ D̄ is derivable in H.

‚ For any p-free multiset C̄, if U ¨ pC̄ ñq has a proof in G with length
less than or equal to n, then C̄ ñ @pU is derivable in H.

Where by the length we mean counting just the new rules that H adds to G.

First note that for the empty sequent and for piiiq, we have to show that
if C̄ ñ D̄ is valid in G, then C̄, 1 ñ D̄ is valid in H, which is trivial by the
rule pL1q. Similarly, for pivq, if C̄ ñ is valid in G, then C̄ ñ 0 is valid in H,
which is trivial by the rule pR0q.

For the base of the other induction, note that if n “ 0, for piiiq it means
that Γ, C̄ ñ D̄ is valid in G. By Definition 4.1 part pivq, DGpV, C̄ ñ D̄ and
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hence DpV, C̄ ñ D̄ is provable in H. For pivq, it means that Γ, C̄ ñ ∆ is valid
in G. Therefore, again by Definition 4.1, C̄ ñ @GpU and hence C̄ ñ @pU is
provable in H.

For n ‰ 0, to prove piiiq, we have to consider the following cases:

˝ The case that the last rule used in the proof of V ¨ pC̄ ñ D̄q is a left
semi-analytic rule and ϕ P C̄ (which means that the main formula of the
rule, ϕ, is one of Ci’s). Therefore, V ¨pC̄ ñ D̄q “ pΠ,Γ, X̄, Ȳ , ϕñ ∆q is
the conclusion of a left semi-analytic rule and V is of the form pΠ,Γñq
and C̄ “ pX̄, Ȳ , ϕq and we want to prove pDpV, X̄, Ȳ , ϕ ñ ∆q. Hence,
we must have had the following instance of the rule

xxΠj, X̄j, ψ̄js ñ θ̄jsysyj xxΓi, Ȳi, ϕ̄ir ñ ∆iyryi

Π,Γ, X̄, Ȳ , ϕñ ∆

where
Ť

j

Πj “ Π,
Ť

i

Γi “ Γ,
Ť

j

X̄j “ X̄,
Ť

i

Ȳi “ Ȳ and
Ť

i

∆i “ ∆.

Consider Tjs “ pΠj ñq and Sir “ pΓi ñq. Since Tjs’s do not depend
on the suffix s, we have Tj1 “ ¨ ¨ ¨ “ Tjs and we denote it by Tj. And,
since Sir’s do not depend on r, we have Si1 “ ¨ ¨ ¨ “ Sir and we denote
it by Si. Therefore, T1, ¨ ¨ ¨ , Tm, S1, ¨ ¨ ¨ , Sn is a partition of V . First,
consider the case that it is a non-trivial partition. Then the order of all
of them are less than the order of V and since the rule is semi-analytic
and ϕ is p-free then ψ̄js, θ̄js and ϕ̄ir are also p-free. Hence, we can use
the induction hypothesis to get:

DpTj, ψ̄js, X̄j ñ θ̄js , DpSi, ϕ̄ir, Ȳi ñ ∆i

If we let tDpTj, X̄ju and tDpSi, Ȳiu be the contexts in the original left
semi-analytic rule, we have the following

xxDpTj, ψ̄js, X̄j ñ θ̄jsysyj xxDpSi, ϕ̄ir, Ȳi ñ ∆iyryi

DpT1, ¨ ¨ ¨ , DpTm, DpS1, ¨ ¨ ¨ , DpSn, X̄, Ȳ , ϕñ ∆

Using the rule pL˚q we have

p˚
j
DpTjq ˚ p˚

i
DpSiq, X̄, Ȳ , ϕñ ∆.

Therefore using the rule pL^q, we have pDpV, C̄ ñ D̄q.
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If T1, ¨ ¨ ¨ , Tm, S1, ¨ ¨ ¨ , Sn is a trivial partition of V , it means that one of
them equals V and all the others are empty sequents. W.l.o.g. suppose
T1 “ V “ pΣ ñq and the others are empty. Then we must have had
the following instance of the rule:

xxΣ, ψ̄js, X̄j ñ θ̄jsysyj xxϕ̄ir, Ȳi ñ ∆iyryi

Σ, X̄, Ȳ , ϕñ ∆

Therefore, V ¨ pψ̄js, X̄j ñ θ̄jsq for every j and s are premises of V ¨ pC̄ ñ
D̄q, and hence the length of their trees are smaller than the length of
the proof tree of V ¨ pC̄ ñ D̄q, and since the rule is semi-analytic and
ϕ is p-free then ψ̄js and θ̄js are also p-free. Hence, for all of them we
can use the induction hypothesis (induction on the length of the proof),
and we have DpV, ψ̄js, X̄j ñ θ̄js. Substituting tDpV, X̄ju, tX̄ju, tȲiu and
t∆u as the contexts of the premises in the original left rule we have

xxDpV, ψ̄js, X̄j ñ θ̄jsysyj xxϕ̄ir, Ȳi ñ ∆iyryi

DpV, X̄, Ȳ , ϕñ ∆

which is pDpV, C̄ ñ D̄q.

˝ Consider the case where the last rule used in the proof of V ¨ pC̄ ñ D̄q
is a left semi-analytic rule and ϕ R C̄. Therefore,

V ¨ pC̄ ñ D̄q “ pΠ,Γ, X̄, Ȳ , ϕñ ∆q

is the conclusion of a left semi-analytic rule and V is of the form
pΠ,Γ, ϕ ñq and C̄ “ pX̄, Ȳ q and we want to prove pDpV, X̄, Ȳ ñ ∆q.
Hence, we must have had the following instance of the rule

xxΠj, X̄j, ψ̄js ñ θ̄jsysyj xxΓi, Ȳi, ϕ̄ir ñyryi‰1 xΓ1, Ȳ1, ϕ̄1r ñ ∆yr
p:q

Π,Γ, X̄, Ȳ , ϕñ ∆

where
Ť

j

Πj “ Π,
Ť

i

Γi “ Γ,
Ť

j

X̄j “ X̄ and
Ť

i

Ȳi “ Ȳ .

Since, X̄j’s and Ȳi’s are in the context positions in the original rule, we
can consider the same substition of meta-sequents and meta-formulas
as above in the original rule, except that we do not take X̄j’s and Ȳi’s as
contexts. More precisely, we reach the following instance of the original
rule:
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xxΠj, ψ̄js ñ θ̄jsysyj xxΓi, ϕ̄ir ñyryi‰1 xΓ1, ϕ̄1r ñ ∆yr
Π,Γ, ϕñ ∆

If we let Tjs “ pΠj, ψ̄js ñ θ̄jsq and Sir “ pΓi, ϕ̄ir ñq for i ‰ 1 and
S1r “ pΓ1, ϕ̄1r ñ ∆q, we can claim that this rule is back ward applicable
to V and Tjs’s and Sir’s are the premises of the rule. Hence, their orders
are less than the order of V and we can use the induction hypothesis
for them. Note that we have V ¨ pC̄ ñ D̄q is provable in H and from p:q

we have that Tjs ¨ pX̄j ñq and for i ‰ 1, Sir ¨ pȲi ñ ∆q and S1r ¨ pȲ1 ñq
are also provable in H. Using the induction hypothesis we get

pX̄j ñ @pTjsq , pȲi ñ @pSirqi‰1 , pȲ1, DpS1r ñ ∆q

Note that we were allowed to use the induction hypothesis because for
i ‰ 1 we have ∆i “ H and ∆ is p-free and Tjs’s and Sir’s meet the
conditions of piiiq and pivq in the induction step. Now, using the rules
pR^q and pL_q we have

pX̄j ñ
Ź

s

@pTjsq , pȲi ñ
Ź

r

@pSirqi‰1 , pȲ1,
Ž

r

DpS1r ñ ∆q

Denote p
Ź

s

@pTjsq as Aj and p
Ź

r

@pSirq as Bi (for i ‰ 1) and p
Ž

r

DpS1rq

as C. We have

xX̄j ñ Ajyj
R˚

X̄ ñ ˚
j
Aj

xȲi ñ Biyi‰1
R˚

Y2, ¨ ¨ ¨ , Yn ñ ˚
i‰1

Bi

R˚

X̄, Y2, ¨ ¨ ¨ , Yn ñ p˚
j
Ajq ˚ p˚

i‰1
Biq Ȳ1, C ñ ∆

L Ñ

X̄, Ȳ , p˚
j
Ajq ˚ p˚

i‰1
Biq Ñ C ñ ∆

Note that p˚
j
Ajq˚p˚

i‰1
Biq Ñ C is defined as the second conjunct in the

definition of DpV and hence using the rule pL^q we have pDpV, C̄ ñ ∆q.

˝ Consider the case when the last rule used in the proof of V ¨ pC̄ ñ D̄q
is a right semi-analytic rule. Therefore, V ¨ pC̄ ñ D̄q “ pΓ, C̄ ñ ϕq is
the conclusion of a right semi-analytic rule and V is of the form pΓñq
and D̄ “ ϕ and we want to prove pDpV, C̄ ñ ϕq. Hence, we must have
had the following instance of the rule

xxΓi, C̄i, ϕ̄ir ñ ψ̄iryryi

Γ, C̄ ñ ϕ
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where
Ť

i

Γi “ Γ and
Ť

i

C̄i “ C̄. Denote pΓi ñq as Si. Then we have

that S1, ¨ ¨ ¨ , Sn is a partition of V . First consider the case where it is
a non-trivial partition of V . Therefore, the order of any Si is less than
the order of V and since the rule is semi-analytic and ϕ is p-free then
ψ̄ir and ϕ̄ir are also p-free, we can use the induction hypothesis on the
order, and get

DpSi, C̄i, ϕ̄ir ñ ψ̄ir

Now, substituting tDpSi, C̄iu as the context in the original rule, we get

DpS1, ¨ ¨ ¨ , DpSn, C̄1, ¨ ¨ ¨ , C̄n ñ ϕ

then using the rule pL˚q we have

˚
i
DpSi, C̄ ñ ϕ

and since ˚
i
DpSi appears as the first conjunct in the definition of DpV ,

using the rule pL^q we have pDpV, C̄ ñ ϕq.
It remains to investigate the case where S1, ¨ ¨ ¨ , Sn is a trivial partition
of V . W.l.o.g. suppose S1 “ V and all the others are the empty
sequents. Hence, we must have had the following instance of the rule

xΓ, C̄1, ϕ̄1r ñ ψ̄1ryr xx C̄i, ϕ̄ir ñ ψ̄iryryi‰1

Γ, C̄ ñ ϕ

We have, for all r, V ¨ pC̄1, ϕ̄1r ñ ψ̄1rq are the premises of V ¨ pC̄ ñ ϕq.
Hence the length of tree proofs of all of them are less than the length
of proof of V ¨ pC̄ ñ ϕq and since the rule is semi-analytic and ϕ
is p-free then ψ̄1r and ϕ̄1r are also p-free, we can use the induction
hypothesis (induction on the length of proof) and get DpV, C̄1, ϕ̄1r ñ

ψ̄1r. Substituting tDpV, C̄1u as the context in the original semi-analytic
rule we get

xDpV, C̄1, ϕ̄1r ñ ψ̄1ryr xx C̄i, ϕ̄ir ñ ψ̄iryryi‰1

DpV, C̄ ñ ϕ

which is what we wanted.
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˝ And the final case is when the last rule used in the proof of V ¨pC̄ ñ D̄q
is a semi-analytic modal rule. Therefore, V ¨ pC̄ ñ D̄q “ plΓ,lC 1 ñ

l∆q is the conclusion of a semi-analytic modal rule and V is of the
form plΓ ñq and C̄ “ lC 1 and D̄ “ l∆q, where |l∆| ď 1 and
V 1 “ pΓñq. We want to prove pDpV, C̄ ñ D̄q. We must have had the
following instance of the rule

Γ, C̄ 1 ñ ∆̄

lΓ,lC 1 ñ l∆

Since the order of V 1 is less than the order of V , and C 1 and ∆ are
p-free, we can use the induction hypothesis and get

DpV 1, C̄ 1 ñ ∆̄

Using the rule K or D (depending on the cardinality of l∆) we have
lDpV 1,lC 1 ñ l∆ and since we have lDpV 1 as one of the conjuncts
in the definition of DpV , we conclude DpV, C̄ ñ D̄ using the rule pL^q.

Now, we have to prove pivq. Similar to the proof of part piiiq, there are
several cases to consider.

˝ Consider the case where the last rule in the proof of U ¨ pC̄ ñq is a left
semi-analytic rule and ϕ P C̄. Therefore, U ¨ pC̄ ñq “ pΠ,Γ, X̄, Ȳ , ϕñ
∆q is the conclusion of a left semi-analytic rule and U is of the form
Π,Γ ñ ∆ and C̄ “ X̄, Ȳ , ϕ and we want to prove X̄, Ȳ , ϕ ñ @pU .
Hence, we must have had the following instance of the rule:

xxΠj, X̄j, ψ̄js ñ θ̄jsysyj xxΓi, Ȳi, ϕ̄ir ñ ∆iyryi

Π,Γ, X̄, Ȳ , ϕñ ∆

where
Ť

j

Πj “ Π,
Ť

i

Γi “ Γ,
Ť

j

X̄j “ X̄,
Ť

i

Ȳi “ Ȳ and
Ť

i

∆i “ ∆.

Consider Tjs “ pΠj ñq, S1r “ Γ1 ñ ∆1, and for i ‰ 1 let Sir “ pΓi ñq.
Since Tjs’s do not depend on the suffix s, we have Tj1 “ ¨ ¨ ¨ “ Tjs and
we denote it by Tj. And, since Sir’s do not depend on r for i ‰ 1, we
have S21 “ ¨ ¨ ¨ “ Sir and we denote it by Si and with the same line
of reasoning we denote S1r by S1. Therefore, T1, ¨ ¨ ¨ , Tm, S1, ¨ ¨ ¨ , Sn is
a partition of U . First, consider the case that S1 does not equal U .
Then the order of all of them are less than the order of U (or in some
cases that the others can be equal to U , the length of their proof in
the premises is lower) and since the rule is semi-analytic and ϕ is p-free
then ψ̄js, θ̄js and ϕ̄ir are also p-free, we can use the induction hypothesis
to get (for i ‰ 1):
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DpTj, ψ̄js, X̄j ñ θ̄js , DpSi, ϕ̄ir, Ȳi ñ , ϕ̄1r, Ȳ1 ñ @pS1r

If we let tDpTj, X̄ju and tDpSi, Ȳiu and tȲ1u and t@pS1ru be the contexts
in the original left semi-analytic rule, we have the following

xxDpTj, ψ̄js, X̄j ñ θ̄jsysyj xxDpSi, ϕ̄ir, Ȳi ñyryi‰1 xϕ̄1r, Ȳ1 ñ @pS1ryr

DpT1, ¨ ¨ ¨ , DpTm, DpS2, ¨ ¨ ¨ , DpSn, X̄, Ȳ , ϕñ @pS1

Using the rule pL˚q we have

p˚
j
DpTjq ˚ p˚

i‰1
DpSiq, X̄, Ȳ , ϕñ @pS1.

Therefore using the rule pRÑq, we have

X̄, Ȳ , ϕñ p˚
j
DpTjq ˚ p˚

i‰1
DpSiq Ñ @pS1.

Since the right side of the sequent is a disjunct in the definition of @pU ,
using the rule pR_q we have C̄, ϕñ @pU .
In the case that T1, ¨ ¨ ¨ , Tm, S1, ¨ ¨ ¨ , Sn is a trivial partition of U , it
means that either S1 “ U or U s “ H and one of the others is equal to
U .
If S1 “ U “ Γñ ∆, then all the others are the empty sequents. Then
we must have had the following instance of the rule:

xxψ̄js, X̄j ñ θ̄jsysyj xxϕ̄ir, Ȳi ñyryi‰1 xΓ, ϕ1r, Ȳ1 ñ ∆yr

Γ, X̄, Ȳ , ϕñ ∆

Therefore, U ¨ pϕ1r, Ȳ1 ñq for every r are premises of U ¨ pC̄ ñq, and
hence the length of their trees are smaller than the length of the proof
tree of U ¨ pC̄ ñq and since the rule is semi-analytic and ϕ is p-free
then ϕ̄1r are also p-free, which means that for all of them we can use
the induction hypothesis (induction on the length of the proof), and
we have pϕ1r, Ȳ1 ñ @pUq. Substituting t@pUu, tX̄iu and tȲiu as the
contexts of the premises in the original left rule and letting all the other
contexts in the original left rule to be empty we have

xxψ̄js, X̄j ñ θ̄jsysyj xxϕ̄ir, Ȳi ñyryi‰1 xϕ1r, Ȳ1 ñ @pUyr

X̄, Ȳ , ϕñ @pU

which is what we wanted.
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˝ Consider the case where the last rule in the proof of U ¨ pC̄ ñq is a left
semi-analytic rule and ϕ R C̄. Therefore, U ¨ pC̄ ñq “ pΠ,Γ, X̄, Ȳ , ϕñ
∆q is the conclusion of a left semi-analytic rule and U is of the form
Π,Γ, ϕñ ∆ and C̄ “ X̄, Ȳ and we want to prove X̄, Ȳ ñ @pU . Hence,
we must have had the following instance of the rule:

xxΠj, X̄j, ψ̄js ñ θ̄jsysyj xxΓi, Ȳi, ϕ̄ir ñ ∆iyryi
p;q

Π,Γ, X̄, Ȳ , ϕñ ∆

where
Ť

j

Πj “ Π,
Ť

i

Γi “ Γ,
Ť

j

X̄j “ X̄,
Ť

i

Ȳi “ Ȳ and
Ť

i

∆i “ ∆.

Since, X̄j’s and Ȳi’s are in the context positions in the original rule, we
can consider the same substitution of meta-sequents and meta-formulas
as above in the original rule, except that we do not take X̄j’s and Ȳi’s
in the contexts. More precisely, we reach the following instance of the
original rule:

xxΠj, ψ̄js ñ θ̄jsysyj xxΓi, ϕ̄ir ñ ∆iyryi

Π,Γ, ϕñ ∆

If we let Tjs “ pΠj, ψ̄js ñ θ̄jsq and Sir “ pΓi, ϕ̄ir ñ ∆iq, we can claim
that this rule is backward applicable to U and Tjs’s and Sir’s are the
premises of the rule. Hence, their orders are less than the order of U
and we can use the induction hypothesis for them. Note that we have
U ¨ pC̄ ñq is provable in H and from p;q we have that Tjs ¨ pX̄j ñq and
Sir ¨ pȲi ñq are also provable in H. Using the induction hypothesis we
get

X̄j ñ @pTjs , Ȳi ñ @pSir

Using the rule pR^q we get

X̄j ñ
Ź

s

@pTjs , Ȳi ñ
Ź

r

@pSir

and using the rule pR˚q we get

X̄, Ȳ ñ p˚
j

ľ

s

@pTjsq ˚ p˚
r

ľ

r

@pSirq.

Since the right side of the sequent is appeared as the second disjunct
in the definition of @pU , using the rule pR_q we have C̄ ñ @pU .
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˝ Consider the case where the last rule in the proof of U ¨ pC̄ ñq is a
right semi-analytic rule. Therefore, U ¨ pC̄ ñq “ pΓ, C̄ ñ ϕq is the
conclusion of a right semi-analytic rule and U is of the form Γñ ϕ and
we want to prove C̄ ñ @pU . Hence, we must have had the following
instance of the rule:

xxΓi, C̄i, ϕ̄ir ñ ψ̄iryryi
p‹q

Γ, C̄ ñ ϕ

where
Ť

i

Γi “ Γ and
Ť

i

C̄i “ C̄.

With the similar reasoning as in the previous case, since C̄i’s are in the
context positions in the original rule, we can consider the same sub-
stitution of meta-sequents and meta-formulas as above in the original
rule, except that we do not take C̄i’s in the contexts. More precisely,
we reach the following instance of the original rule:

xxΓi, ϕ̄ir ñ ψ̄iryryi

Γñ ϕ

If we let Sir “ pΓi, ϕ̄ir ñ ψ̄irq we can claim that this rule is backward
applicable to U and Sir’s are the premises of the rule. Hence, their
orders are less than the order of U and since the rule is semi-analytic
and ϕ is p-free then ψ̄ir and ϕ̄ir are also p-free, we can use the induction
hypothesis for them. Note that we have U ¨ pC̄ ñq is provable in H
and from p‹q we have that Sir ¨ pC̄i ñq is also provable in H. Using the
induction hypothesis we get for every i and r,

C̄i ñ @pSir.

Using the rule pR^q we get C̄i ñ
Ź

r

@pSir and then using the rule

pR˚q we get C̄i ñ ˚
i

Ź

r

@pSir. And since the right side of the sequent

is appeared as one of the disjuncts in the definition of @pU , using the
rule pR_q we have C̄ ñ @pU .

˝ And the final case is when the last rule used in the proof of U ¨ pC̄ ñq is
a semi-analytic modal rule. Therefore, U ¨ pC̄ ñq “ plΓ,lC 1 ñ l∆q
is the conclusion of a semi-analytic modal rule and U is of the form
plΓ ñ l∆q and C̄ “ lC 1, where |l∆| ď 1 and U 1 “ pΓ ñ ∆q. We
want to prove pC̄ ñ @pUq. We must have had the following instance
of the rule
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Γ, C̄ 1 ñ ∆̄

lΓ,lC 1 ñ l∆

Since the order of U 1 is less than the order of U and C 1 is p-free, we
can use the induction hypothesis and get

C̄ 1 ñ @pU 1

Using the rule K or D (depending on the cardinality of l∆) we have
lC 1 ñ l@pU 1 and since we have l@pU 1 as one of the disjuncts in the
definition of @pU , we conclude C̄ ñ @pU using the rule pR_q.

Theorem 4.5. Any terminating sequent calculus H that extends FLe and
consists of centered axioms and semi-analytic rules, has H-uniform interpo-
lation.

Proof. The proof is a result of the combination of the Theorem 4.3 and
Theorem 4.4.

Corollary 4.6. If FLe Ď L and L has a terminating sequent calculus con-
sisting of centered axioms and semi-analytic rules, then L has uniform inter-
polation.

Proof. The proof is a result of the combination of the Theorem 4.5 and
Theorem 4.2.

In the following application, we will use the Corollary 4.6 to generalize
the result of [1] to also cover the modal cases:

Corollary 4.7. The logics FLe, FLew and their K and KD versions have
uniform interpolation.

Proof. Since all the rules of the usual calculi of these logics are semi-analytic
and their axioms are centered and since in the absence of the contraction
rule the calculi are clearly terminating, by Corollary 4.6, we can prove the
claim.
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4.1.2 Context-Sharing Semi-analytic Case

In this subsection we will modify the investigations of the last subsection to
also cover the context-sharing semi-analytic rules.

Theorem 4.8. Let G and H be two sequent calculi with the property that the
right and left weakening rules and the context-sharing pLÑq rule are admis-
sible in H and H extends FLe. Then if H is a terminating sequent calculus
axiomatically extending G with semi-analytic rules and context-sharing semi-
analytic rules and G has weak H-uniform interpolation property, so does H.

Proof. The proof is similar to the proof of Theorem 4.4. For any sequent U
and V where V s “ H and any atom p, we define two p-free formulas, denoted
by @pU and DpV and we will prove that they meet the conditions in the defi-
nition of weak H-uniform interpolation. We define them simultaneously and
the definition uses recursion on the rank of sequents which is specified by the
terminating condition of the sequent calculus H.

If V is the empty sequent we define DpV as 1 and otherwise, we define
DpV as the following
ľ

LRcsa

p˚
i‰1
rp

ľ

r

pDpS̃ir Ñ @pSirqq^p
ľ

s

pDpT̃is Ñ @pTisqqs˚pp
ľ

s

DpT̃1s Ñ @pT1sq Ñ
ł

r

DpS1rq

^
ľ

LRsa

p˚
i

ľ

r

pDpS̃ir Ñ @pSirq ˚ p˚
j

ľ

s

pDpT̃js Ñ @pTjsq Ñ
ł

r

DpS1rq

^p
ľ

par

˚
i
DpSiq ^ plDpV

1q ^ pDGpV q.

where for any sequent R, by R̃ we mean Ra ñ. In the first conjunct (the
first line), the first big conjunction is over all context semi-analytic rules
that are backward applicable to V in H. Since H is terminating, there
are finitely many of such rules. The premises of the rule are xxTisysyi,
xxSiryryi‰1 and xS1ry and the conclusion is V , where Tis “ pΓi, ψ̄is ñ θ̄isq
and Sir “ pΓi, ϕ̄ir ñ ∆iq which means that Sir’s are those who have context
in the right side of the sequents (∆i) in the premises of the context-sharing
semi-analytic rule. (Note that picking the block xS1ry between the Sir blocks
is arbitrary and for any choice of xS1ry, we add one conjuct to the definition.)

In the second conjunct (the second line), the first big conjunction is over
all left semi-analytic rules that are backward applicable to V in H. Since
H is terminating, there are finitely many of such rules. The premises of
the rule are xxTjsysyj, xxSiryryi‰1 and xS1ry and the conclusion is V , where
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Tjs “ pΠj, ψ̄js ñ θ̄jsq and Sir “ pΓi, ϕ̄ir ñ ∆iq which means that Sir’s are
those who have context in the right side of the sequents (∆i) in the premises
of the left semi-analytic rule. (Again note that picking the block xS1ry be-
tween the Sir blocks is arbitrary and for any choice of xS1ry, we add one
conjuct to the definition.)

In the third conjunct (first one in the third line), the conjunction is over
all non-trivial partitions of V “ S1 ¨ ¨ ¨ ¨ ¨ Sn and i ranges over the number
of Si’s, in this case 1 ď i ď n.

The conjunct lDpV 1 appears in the definition whenever V is of the form
plΓñq and we consider V 1 to be pΓ ñq. And finally, since G has weak H-
uniform interpolation property, by definition there exist JpV q as weak right
p-interpolant of V . We choose one such JpV q and denote it as DGpV and
include it in the definition.

If U is the empty sequent define @pU as 0. Otherwise, define @pU as the
following

ł

LRcsa

p˚
i
r
ľ

r

pDpS̃ir Ñ @pSirq ^
ľ

s

pDpT̃is Ñ @pTisqsq

_
ł

LRsa

pr˚
i

ľ

r

pDpS̃ir Ñ @pSirqs ˚ r˚
j

ľ

s

pDpT̃js Ñ @pTjsqsq

_p
ł

RR
p˚
i

ľ

r

pDpS̃ir Ñ @pSirqqq

_
ł

par

p˚
i‰1
pDpSiq Ñ @pS1q _ plpDpŨ 1 Ñ @pU 1qq _ p@GpUq.

In the first conjunct (the first line), the first big conjunction is over all context
sharing semi-analytic rules that are backward applicable to V in H. Since H
is terminating, there are finitely many of such rules. The premises of the rule
are xxTisysyi, xxSiryryi and the conclusion is V , where Tis “ pΓi, ψ̄is ñ θ̄isq
and Sir “ pΓi, ϕ̄ir ñ ∆iq.

In the second conjunct (the second line), the first big conjunction is over
all left semi-analytic rules that are backward applicable to V in H. Since H
is terminating, there are finitely many of such rules. The premises of the rule
are xxTjsysyj, xxSiryryi and the conclusion is V , where Tjs “ pΠj, ψ̄js ñ θ̄jsq
and Sir “ pΓi, ϕ̄ir ñ ∆iq.
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In the third disjunct (the third line), the big disjunction is over all right
semi-analytic rules backward applicable to U in H. The premise of the rule
is xxSiryryi and the conclusion is U .

In the fourth disjunct, the big disjunction is over all partitions of U “

S1 ¨ ¨ ¨ ¨ ¨ Sn such that for each i ‰ 1 we have Ss
i “ H and S1 ‰ U . (Note

that in this case, if Ss “ H it may be possible that for one i ‰ 1 we have
Si “ U . Then the first disjunct of the definition must be DpU Ñ @pS1 where
@pS1 “ 0. But this does not make any problem, since the definition of DpU
is prior to the definition of @pU .)

The fifth disjunct is on all semi-analytic modal rules with the result U
and the premise U 1. And finally, since G has weak H-uniform interpolation
property, by definition there exist IpUq as left weak p-interpolant of U . We
choose one such IpUq and denote it as @GpU and include it in the definition.

To prove the theorem we use induction on the order of the sequents to
prove both cases @pU and DpV simultaneously. First we have to show that:

piq V ¨ pñ DpV q is derivable in H.

piiq U ¨ p@pU ñq is derivable in H.

The proof is similar to the proof of the Theorem 4.4. Therefore, we will
prove two of the cases, one for piq and one for piiq, where there is a notable
difference.

˝ In proving piq, we have to show that V ¨pñ Xq is derivable in H for any
X that is one of the conjuncts in the definition of DpV . Then, using
the rule pR^q it follows that V ¨ pñ DpV q. Since V is of the form Γñ,
we have to show Γñ X is derivable in H.
Consider the case where X is the first conjunct in the definition of DpV .
In this case, we have to prove that for any context-sharing semi-analytic
rules that is backward applicable to V in H, we have V ¨ pñ Y q in H,
where X “

Ź

LRsh

Y . Therefore, V is the conclusion of a context-sharing

semi-analytic rule and is of the form pΓ, ϕ ñq such that the premises
are xxTisysyi and xxSiryryi, where Tis is of the form pΓi, ψ̄is ñ θ̄isq and
Sir is of the form pΓi, ϕ̄ir ñq and we have tΓ1, ¨ ¨ ¨ ,Γnu “ Γ. Therefore,
their orders are less than the order of V . Moreover, since T̃is “ pT

a
is ñq

and S̃ir “ pT
a
ir ñq and they are subsequents of Tis and Sir, their orders

are less than or equal to the orders of Tis and Sir. Hence, we can use
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the induction hypothesis for all of them.

Using the induction hypothesis for Tis, T̃is, Sir and S̃ir, for i ‰ 1, we
have the following

Γi, ψ̄is, @pTis ñ θ̄is , Γi, ψ̄is ñ DpT̃is,

Γi, ϕ̄ir,@pSir ñ , Γi, ϕ̄ir ñ DpS̃ir.

And using the induction hypothesis for S1r, T1s and T̃1s we have

Γ1, ϕ̄1r ñ DpS1r , Γ1, ψ̄1s, @pT1s ñ θ̄1s , Γ1, ψ̄1s ñ DpT̃1s.

Now, using the left context-sharing implication rule, we have

Γi, ψ̄is, DpT̃is Ñ @pTis ñ θ̄is

Γi, ϕ̄ir, DpS̃ir Ñ @pSir ñ

Γ1, ψ̄1s, DpT̃1s Ñ @pT1s ñ θ̄1s

Now, first using the rules pL^q and pR_q, we have

Γi, ψ̄is,
Ź

s

pDpT̃is Ñ @pTisq ñ θ̄is , Γi, ϕ̄ir,
Ź

r

pDpS̃ir Ñ @pSirq ñ

Γ1, ψ̄1s,
Ź

s

pDpT̃1s Ñ @pT1sq ñ θ̄1s , Γ1, ϕ̄1r ñ
Ž

r

DpS1r.

For simplicity, denote pDpT̃is Ñ @pTisq as Ais and pDpS̃ir Ñ @pSirq as
Bir. If we use the rule pL^q again, and the rule left weakening only for
S1r, and not changing the rule for T1r, we have

Γi, ψ̄is, p
Ź

s

Ais ^
Ź

r

Birq ñ θ̄is , Γi, ϕ̄ir, p
Ź

s

Ais ^
Ź

r

Birq ñ

Γ1, ψ̄1s,
Ź

s

A1s ñ θ̄1s , Γ1, ϕ̄1r,
Ź

s

A1s ñ
Ž

r

DpS1r.
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Now, it is easy to see that the contexts are sharing and we can substitute
the above sequents in the original rule. More precisely, in the original
context-sharing semi-analytic rule consider pΓi, p

Ź

s

Ais^
Ź

r

Birqq as the

context of the premises (as Γi’s in definition of a context-sharing semi-
analytic rule 3.1) for i ‰ 1 and consider pΓ1,

Ź

s

A1sq as the context of

the premises for i “ 1 (as Γ1’s in definition of a context-sharing semi-
analytic rule 3.1). Therefore, after substituting the above sequents in
the original context-sharing semi-analytic rule, we conclude

Γ1,
ľ

s

A1s,Γ2, ¨ ¨ ¨ ,Γn, p
ľ

s

Ais ^
ľ

r

Birqi‰1, ϕñ
ł

r

DpS1r

And finally, using the rule L˚ and RÑ we get

Γ, ϕñ p˚
i‰1
p
ľ

s

Ais ^
ľ

r

Birq ˚ p
ľ

s

A1sq Ñ
ł

r

DpS1rq

and this is what we wanted.

˝ To prove piiq, we have to show that U ¨ pX ñq is derivable in H for any
X that is one of the disjuncts in the definition of @pU . Then, using the
rule pL_q it follows that U ¨ p@pU ñq. Since U is of the form pΓñ ∆q,
we have to show pΓ, X ñ ∆q is derivable in H.
In the case that the disjunt is

ł

LRcsa

p˚
i
r
ľ

r

pDpS̃ir Ñ @pSirq ^
ľ

s

pDpT̃is Ñ @pTisqsq,

we have to prove that for any context-sharing semi-analytic rule that
is backward applicable to U in H we have

U ¨ p˚
i
r
ľ

r

pDpS̃ir Ñ @pSirq ^
ľ

s

pDpT̃is Ñ @pTisqs ñq.

The proof goes exactly as in the previous case (in proof of piq for
context-sharing semi-analytic rules), except that this time the succe-
dents of Sir’s and U are not empty and ∆i’s and ∆ appear in their
positions everywhere. And, we do not separate the cases T1s and S1r

and we proceed with the proof considering the induction hypothesis for
every i, in a uniform manner.

Note that these two cases were the cases for the only rule that is not consid-
ered in the proof of 4.4. For the proof of piq for the other conjuncts and piiq
for the other disjuncts, we proceed with the proof of the corresponding cases
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as in the proof of 4.4, this time substituting pDpT̃js Ñ @pTjsq for @pTjs and
pDpS̃ir Ñ @pSirq for @pSir wherever it is needed. One can easily see that the
proof essentially goes as before, considering this minor change.

Secondly, we have to prove the following, as well.

piiiq For any p-free multisets Γ and ∆, if T ¨ pΓñ ∆q is derivable in G then
JpT q,Γñ ∆ is derivable in H.

pivq For any p-free multiset Γ, if S ¨ pΓñq is derivable in G then JpS̃q,Γñ
IpSq is derivable in H.

Again, since the spirit of the proof is the same as the proof of Theorem 4.4,
we will prove two cases for the context-sharing semi-analytic rule, which were
not present in the Theorem 4.4. We will prove piiiq and pivq simultaneously
using induction on the length of the proof and induction on the order of U
and V as in the Theorem 4.4.

˝ To prove piiiq, consider the case where the last rule used in the proof
of V ¨ pC̄ ñ D̄q is a context-sharing semi-analytic rule and ϕ R C̄.
Therefore, V ¨ pC̄ ñ D̄q “ pΓ, C̄, ϕñ ∆q is the conclusion of a context-
sharing semi-analytic rule and V is of the form pΓ, ϕñq and we want to
prove pDpV, C̄ ñ ∆q. Hence, we must have had the following instance
of the rule

xxΓi, C̄i, ψ̄is ñ θ̄isysyi xxΓi, C̄i, ϕ̄ir ñyryi‰1 xΓ1, C̄1, ϕ̄1r ñ ∆yr

Γ, C̄, ϕñ ∆

where
Ť

j

Πj “ Π,
Ť

i

Γi “ Γ and
Ť

i

C̄i “ C̄.

Since, C̄i’s are in the context positions in the original rule, we can
consider the same substition of meta-sequents and meta-formulas as
above in the original rule, except that we do not take C̄i’s as contexts.
More precisely, we reach the following instance of the original rule:

xxΓi, ψ̄is ñ θ̄isysyi xxΓi, ϕ̄ir ñyryi‰1 xΓ1, ϕ̄1r ñ ∆yr
Γ, ϕñ ∆

If we let Tis “ pΓi, ψ̄is ñ θ̄isq and Sir “ pΓi, ϕ̄ir ñq for i ‰ 1 and
S1r “ pΓ1, ϕ̄1r ñ ∆q, we can claim that this rule is backward applicable
to V and Tis’s and Sir’s are the premises of the rule. Hence, their orders
are less than the order of V and we can use the induction hypothesis
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for them. Furthermore, since T̃is “ pT
a
is ñq and S̃ir “ pS

a
ir ñq, their

orders are smaller than or equal to the orders of Tis and Sir and we can
use the induction hypothesis for them, as well. Using the induction
hypothesis (informally speaking, for the first two premises, use the
induction hypothesis of @, and for the last premise use the induction
hypothesis of D) we get

pC̄i, DpT̃is ñ @pTisq , pC̄i, DpS̃ir ñ @pSirqi‰1 , pC̄1, DpS1r ñ ∆q

Now, first using the rules pR Ñq and then using the rule pR^q and
pL_q we have

pC̄i ñ
ľ

s

pDpT̃is Ñ @pTisqq

pC̄i ñ
ľ

r

pDpS̃ir Ñ @pSirqqi‰1

pC̄1,
ł

r

DpS1r ñ ∆q

Denote p
Ź

s

@pTjsq as Aj and p
Ź

r

@pSirq as Bi (for i ‰ 1) and p
Ž

r

DpS1rq

as D. We have for i ‰ 1

C̄i ñ Ai , C̄i ñ Bi

and for i “ 1 we have

C̄1 ñ A1 , C̄1, D ñ ∆.

Now, and using the rule pR^q for i ‰ 1 we get C̄i ñ Ai^Bi. Together
with C̄1 ñ A1 and using the rule pR˚q we get

C̄1, C̄2, ¨ ¨ ¨ , C̄n ñ ˚
i
pAi ^Biq ˚ A1.

Consider the sequent C̄1, D ñ ∆ and use the left weakening rule to get

C̄1, C̄2, ¨ ¨ ¨ , C̄n, D ñ ∆.

Now, use the rule left context-sharing implication to reach

C̄, p˚
i
pAi ^Biq ˚ A1q Ñ D ñ ∆.

And, we are done.
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˝ For the proof of pivq, consider the case where the last rule in the proof of
U ¨ pC̄ ñq is a context-sharing semi-analytic rule and ϕ P C̄. Therefore,

U ¨ pC̄ ñq “ Γ, X̄, ϕñ ∆

is the conclusion of a context-sharing semi-analytic rule and U is of the
form Γ ñ ∆ and C̄ “ X̄, ϕ and we want to prove DpŨ , X̄, ϕ ñ @pU .
Hence, we must have had the following instance of the rule:

xxΓi, X̄i, ψ̄is ñ θ̄isysyi xxΓi, X̄i, ϕ̄ir ñ ∆iyryi

Γ, X̄, ϕñ ∆

where
Ť

i

Γi “ Γ,
Ť

j

X̄j “ X̄, and
Ť

i

∆i “ ∆. Consider Tis “ pΓi ñq,

S1r “ pΓ1 ñ ∆1q, and for i ‰ 1 let Sir “ pΓi ñq. Since Tis’s do not
depend on the suffix s, we have Ti1 “ ¨ ¨ ¨ “ Tis and we denote it by Ti.
And, since Sir’s do not depend on r for i ‰ 1, we have S21 “ ¨ ¨ ¨ “ Sir

and we denote it by Si and with the same line of reasoning we denote
S1r by S1. Therefore, S1, ¨ ¨ ¨ , Sn is a partition of U . First, consider the
case that S1 ‰ U . Then the order of all of them are less than the order
of U (or in some cases that one of the others equals to U , the length of
the proof is lower) and since the rule is context sharing semi-analytic
and ϕ is p-free then ψ̄is and ϕ̄ir are also p-free, we can use the induction
hypothesis to get (for i ‰ 1):

DpTi, ψ̄is, X̄i ñ θ̄is , DpSi, ϕ̄ir, X̄i ñ , DpS̃1, ϕ̄1r, X̄1 ñ @pS1

Note that for every i ‰ 1 we have Ti “ Si and for i “ 1 we have
T1 “ S̃1 and we can rewrite the above sequents according to this new
information. Hence, if we let tDpTi, X̄iu and t@pS1u be the contexts in
the original left semi-analytic rule, we have the following

xxDpTi, ψ̄is, X̄i ñ θ̄isysyi xxDpTi, ϕ̄ir, X̄i ñyryi‰1 xDpT1, ϕ̄1r, X̄1 ñ @pS1yr

DpT1, ¨ ¨ ¨ , DpTn, X̄, ϕñ @pS1

Using first the rule pL˚q and second the rule RÑ we get

DpT1, X̄, ϕñ ˚
i‰1
DpTi Ñ @pS1

Since T2, ¨ ¨ ¨ , Tn, S1 is a partition of U , the right hand side of the above
sequent is appeared as one of the disjuncts in the definition of @pU . And
since T1 Ď Ũ , we have

DpŨ , C̄ ñ @pU
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and we are done.

We have to investigate the case when S1 “ U , as well. However, the
line of reasoning is as above and as in the case of @pU , and ϕ P C̄
in the proof of the Theorem 4.4. The important thing is that in the
case where S1 “ U , with similar reasoning as above, at the end we get
DpS̃1, C̄ ñ @pS1 which solves the problem. Note that this case is one of
the main reasons that we have changed uniform interpolation to weak
uniform interpolation.

And finally, to prove piiiq and pivq for the other cases, use similar reasonings
as in the proof of Theorem 4.4, this time substituting pDpT̃js Ñ @pTjsq for
@pTjs and pDpS̃ir Ñ @pSirq for @pSir wherever it is needed, then the proof
easily follows.

Theorem 4.9. Any terminating sequent calculus H that extends IPC and
consists of centered axioms, semi-analytic and context-sharing semi-analytic
rules, has weak H-uniform interpolation.

Proof. The proof is a result of the combination of the Theorem 4.3 and the
Theorem4.8.

Corollary 4.10. If IPC Ď L and L has a terminating sequent calculus
consisting of centered axioms, semi-analytic rules and context-sharing semi-
analytic rules, then L has uniform interpolation.

Proof. The proof is a result of the combination of the Theorem 4.9 and the
Theorem 4.2.

The clear application of this theorem is the uniform interpolation property
for the logic IPC.

Corollary 4.11. [9] The logic IPC has uniform interpolation.

Proof. Use the Dyckhoff terminating calculus for IPC introduced in the Pre-
liminaries section. Note that all the rules in this calculus, except the rule
pL4q are semi-analytic, while pL4q is context-sharing semi-analytic and all
the axioms are centered. Since this calculus admits weakening and context-
sharing implication rules, by Theorem 4.10 we can prove the claim.
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4.2 The Multi-conclusion Case

Finally we will move to the multi-conclusion case to handle the more general
form of semi-analytic rules.

Theorem 4.12. Let G and H be two sequent calculi and H extends CFLe.
Then if H is a terminating sequent calculus axiomatically extending G with
multi-conclusion semi-analytic rules and G has strong H-uniform interpola-
tion property, so does H.

Proof. For a given sequent S “ pΓ ñ ∆q and an atom p, we define a p-free
formula, denoted by @pS and we will prove that it meets the conditions for
the strong left and right p-interpolants of S, respectively.

If S is the empty sequent define @pS as 0. Otherwise, define @pS as
ł

R
p˚
i

ľ

r

@pSirq _
ł

par

p
ă

i

@pSiq _ pl@pS
1q _ p␣l␣@pS2q _ p@GpSq

where the first disjunction is over all multi-conclusion semi-analytic rules
backward applicable to S in H, which means the result is S and the premises
are Sir. Since H is terminating, there are finitely many of such rules. The
second disjunction is over all non-trivial partitions of S. The third disjunc-
tion is over all semi-analytic modal rules with the result S and the premise
S 1. Moreover, If S is of the form lΓñ, then we consider S2 to be Γñ and
␣l␣@pS2 must be appeared in the definition of @pS. And finally @GpS is
the strong left p-interpolant of a sequent S in G relative to H.

We define the strong right p-interpolant of S as ␣@pS and we denote it by
DpS. Note that if we prove @pS is the strong left p-interpolant, it is easy to
show that DpS meets the conditions for the strong right p-interpolant. The
reason is the following: First we have to show that Γ ñ ∆, DpS is provable
in H. But we have Γ, @pS ñ ∆ is provable in H and using the rule pR0q, we
have Γ, @pS ñ ∆, 0 which means Γñ ∆,␣@pS is provable in H.
Secondly, we have to show that if for p-free multisets Σ and Λ, if Γ,Σñ Λ,∆
is derivable in G, then DpS,Σ ñ Λ is derivable in H. However, we have
Σ ñ Λ, @pS is derivable in H and using the axiom 0 ñ we can use the rule
pLÑq to get Σ,␣@pS ñ Λ in H.

Now let us prove that @pS meets all the conditions of a strong left p-
interpolant. The proof is similar to the proofs of the Theorems 4.4 and 4.8.
To prove the theorem we use induction on the order of the sequents. First,
we have to show that
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piq S ¨ p@pS ñq is provable in H.

We have to show that Γ, X ñ ∆ is derivable in H for every disjunct X in
the definition of @pS.

˝ In the case that the disjunct is
Ž

R
p˚
i

Ź

r

@pSirq, we have to show that

for any multi-conclusion semi-analytic rule R with the premises Sir we
have

S ¨ p˚
i

ľ

r

@pSir ñq

where S is of the form pΓ1, ¨ ¨ ¨ ,Γn, ϕ ñ ∆1, ¨ ¨ ¨ ,∆nq and Sir is of the
form pΓi, ϕ̄ir ñ ψ̄ir,∆iq. Note that since S1

irs are the premises of the
rule, the order of all of them are less than the order of S and we can
use the induction hypothesis for them. We have for every i and r

Γi, ϕ̄ir,@pSir ñ ψ̄ir,∆i

Using the rule pL^q we have for every i

Γi, ϕ̄ir,
ľ

r

@pSir ñ ψ̄ir,∆i

Using Γi,
Ź

r

@pSir as the left context in the original rule (we can do

this, since
Ź

r

@pSir does not depend on r and it only ranges over i), we

have
Γ1, ¨ ¨ ¨ ,Γn, x

ľ

r

@pSiryi, ϕñ ∆1, ¨ ¨ ¨ ,∆n

and then using the rule pL˚q, we have

Γ1, ¨ ¨ ¨ ,Γn, p˚
i

ľ

r

@pSirq, ϕñ ∆1, ¨ ¨ ¨ ,∆n.

˝ In the case that the disjunct is
Ž

par

Ř

i

@pSi, we have to show that for any

non-trivial partition S1, ¨ ¨ ¨ , Sn of S we haveS ¨p
Ř

i

@pSi ñq is derivable

in H. Since the order of each Si is less than the order of S, we can use
the induction hypothesis for them and get pΓi, @pSi ñ ∆iq. Using the
rule pL`q we get Γ1, ¨ ¨ ¨ ,Γn, p

Ř

i

@pSiq ñ ∆1, ¨ ¨ ¨ ,∆n.

˝ The proof of case that the disjunct is l@pS 1 is exactly the same as the
similar case in the proof of the Theorem 4.4.
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˝ In the case that the disjunct is ␣l␣@pS2, the sequent S must have
been of the form plΓñq and S2 is of the form pΓñq. Since the order
of S2 is less than the order of S, we can use the induction hypothesis
and get pΓ, @pS2 ñq is derivable in H. Using the rule pR0q and then
the rule pR Ñq we have pΓ ñ ␣@pS2q. Using the rule pKq we have
plΓ ñ l␣@pS2q and together with the axiom p0 ñq we can use the
rule pLÑq and we have plΓ,␣l␣@pS2 ñq is derivable in H.

˝ The case for @GpS, holds trivially by definition.

Second, we have to show that

piiq For any p-free multisets C̄ and D̄, if S ¨ pC̄ ñ D̄q is derivable in G then
C̄ ñ @pS, D̄ is derivable in H.

We will prove it using induction on the length of the proof and induction on
the order of S. More precisely, first by induction on the order of S and then
inside it, by induction on n, we will show:

‚ For any p-free multisets C̄ and D̄, if S ¨ pC̄ ñ D̄q has a proof in G with
length less than or equal to n, then C̄ ñ @pS, D̄ is derivable in H.

First note that for the empty sequent, we have to show that if C̄ ñ D̄ is
valid in G, then C̄ ñ 0, D̄ is valid in H, which is trivial by the rule pR0q.

For the base of the other induction, note that if n “ 0, it means that
Γ, C̄ ñ D̄,∆ is valid in G. Therefore, by Definition 4.1, C̄ ñ @GpS, D̄ and
hence C̄ ñ @pS, D̄ is valid in H.

For n ‰ 0 we have to consider the following cases:

˝ Consider the case that the last rule used in the proof of S ¨ pC̄ ñ D̄q is
a left multi-conclusion semi-analytic rule and ϕ P C̄ (which means that
the main formula of the rule, ϕ, is one of Ci’s). Therefore, S ¨ pC̄ ñ

D̄q “ pΓ, X̄, ϕ ñ D̄,∆q is the conclusion of the rule and S is of the
form pΓñ ∆q and C̄ “ pX̄, ϕq and we want to prove pX̄, ϕñ @pS, D̄q.
Hence, we must have had the following instance of the rule:

xxΓi, X̄i, ϕ̄ir ñ ψ̄ir, D̄i,∆iyryi

Γ, X̄, ϕñ D̄,∆

where
Ť

i

Γi “ Γ,
Ť

i

X̄i “ X̄,
Ť

i

D̄i “ D̄ and
Ť

i

∆i “ ∆. Consider

Sir “ pΓi ñ ∆iq. Since Sir’s do not depend on the suffix r, all of them
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are equal and we denote it by Si. Therefore, S1, ¨ ¨ ¨ , Sn is a partition
of S. First, consider that it is a non-trivial partition of S. Then the
order of all of them are less than the order of S and since the rule is
semi-analytic and ϕ is p-free then ϕ̄ir and ψ̄ir are also p-free, we can
use the induction hypothesis to get for every i and r:

X̄i, ϕ̄ir ñ ψ̄ir, D̄i, @pSi

If we let X̄i and D̄i, @pSi be the contexts in the left side and right side
in the original rule, respectively, we have the following

X̄, ϕñ D̄, @pS1, ¨ ¨ ¨ ,@pSn

Using the rule pR`q we have

X̄, ϕñ D̄,
ă

i

@pSi

Since the right side of the sequent is a disjunct in the definition of @pU ,
using the rule pR_q we have C̄, ϕñ @pS, D̄.

In the case that S1, ¨ ¨ ¨ , Sn is a trivial partition of S, it means that one
of them equals S. W.l.o.g. suppose S1 “ S and all of the others are
the empty sequents. Then we must have had the following instance of
the rule:

xxϕ̄ir, X̄i ñ ψ̄ir, D̄iyryi‰1 xΓ, ϕ̄1r, X̄1 ñ ψ̄1r, D̄1,∆yr

Γ, ϕ, X̄ ñ D̄,∆

Therefore, S ¨ pϕ1r, X̄1 ñ ψ̄1r, D̄1q for every r are premises of S ¨ pC̄ ñ
D̄q, and hence the length of their trees are smaller than the length of
the proof tree of S ¨ pC̄ ñ D̄q and since the rule is semi-analytic and
ϕ is p-free then ϕ̄1r and ψ̄1r are also p-free, which means that for all of
them we can use the induction hypothesis (induction on the length of
the proof), and we have pϕ1r, X̄1 ñ @pS, ψ̄1r, D̄1q. Substituting tX̄ju

and t@pS, D̄1u as the contexts of the premises in the original rule we
have

xxϕ̄ir, X̄i ñ ψ̄ir, D̄iyryi‰1 xϕ̄1r, X̄1 ñ @pS, ψ̄1r, D̄1yr

X̄, ϕñ @pS, D̄

which is what we wanted.
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˝ Consider the case where the last rule in the proof of S ¨ pC̄ ñ D̄q
is a left multi-conclusion semi-analytic rule and ϕ R C̄. Therefore,
S ¨ pC̄ ñ D̄q “ pΓ, C̄, ϕñ D̄,∆q is the conclusion of the rule and S is
of the form Γ, ϕ ñ ∆ and we want to prove C̄ ñ @pS, D̄. Hence, we
must have had the following instance of the rule:

xxΓi, C̄i, ϕ̄ir ñ ψ̄ir, D̄i,∆iyryi

Γ, C̄, ϕñ D̄,∆

where
Ť

i

Γi “ Γ,
Ť

i

C̄i “ C̄,
Ť

i

D̄i “ D̄ and
Ť

i

∆i “ ∆.

Since, C̄i’s and D̄i’s are in the context positions in the original rule, we
can consider the same substitution of meta-sequents and meta-formulas
as above in the original rule, except that we do not take C̄i’s and D̄i’s
in the contexts. More precisely, we reach the following instance of the
original rule:

xxΓi, ϕ̄ir ñ ψ̄ir,∆iyryi

Γ, ϕñ ∆

If we let Sir “ pΓi, ϕ̄ir ñ ψ̄ir,∆iq, we can claim that this rule is back-
ward applicable to S and Sir’s are the premises of the rule. Hence,
their orders are less than the order of S and we can use the induction
hypothesis for them. Using the induction hypothesis we get for every i
and r

C̄i ñ @pSir, D̄i

Using the rule pR^q we get for every i

C̄i ñ
ľ

r

@pSir, D̄i

and using the rule pR˚q we get

C̄ ñ ˚
i

ľ

r

@pSir, D̄.

Since the right side of the sequent is appeared as one of the disjuncts
in the definition of @pS, using the rule pR_q we have C̄ ñ @pS, D̄.

˝ Consider the case when the last rule used in the proof of S ¨pC̄ ñ D̄q is a
semi-analytic modal rule. Therefore, S ¨ pC̄ ñ D̄q “ plΓ,lC 1 ñ lD1q

is the conclusion of a semi-analytic modal rule. Hence, there are two
cases to consider.
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The first one is the case where S is of the form plΓñq and C̄ “ lC 1

and D̄ “ lD1, where |lD1| ď 1 and S2 “ pΓ ñq. We want to prove
pC̄ ñ @pS, D̄q. We must have had the following instance of the rule

Γ, C̄ 1 ñ D̄1

lΓ,lC 1 ñ lD1

Since the order of S2 is less than the order of S and C 1 and D1 are
p-free, we can use the induction hypothesis and get

C̄ 1 ñ @pS2, D̄1

Using the axiom p0ñq and the rule pLÑq we have

C̄ 1,␣@pS2 ñ D̄1

Now, using the rule K or D (depending on the cardinality of D̄1) we
have

lC 1,l␣@pS2 ñ lD1

and using the rule pR0q and pRÑq we get

lC 1 ñ ␣l␣@pS2,lD1

since we have ␣l␣@pS2 as one of the disjuncts in the definition of
@pS, we conclude C̄ ñ @pS, D̄ using the rule pR_q.

The second case is when S is of the form lΓñ lD1, where D1 is a p-
free formula and S 1 is of the form Γñ D. We want to prove C̄ ñ @pS.
Then we must have had the following instance of the rule

Γ, C̄ 1 ñ D̄1

lΓ,lC 1 ñ lD1

Since C̄ 1 is in the context position of the original rule, we can consider
the same substitution of meta-sequents as above in the original rule,
except that we do not take C̄ 1 in the context. More precisely, we reach
the following instance of the original rule:

Γñ D̄1

lΓñ lD1
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Therefore, this rule is backward applicable to S and the order of the
premise, S1, is less than the order of S and we can use the induction
hypothesis for that to reach C 1 ñ @pS 1. Then we can use the rule K
and we get lC 1 ñ l@pS 1, which is a disjunct in the definition of @pS
and we have C̄ ñ @pS.

˝ The case for the right multi-conclusion semi-analytic rules is similar to
the cases for the left ones disccused in this proof, and the proof of other
two cases are similar to the proof of the same cases in the Theorem 4.4.

Theorem 4.13. Any terminating multi-conclusion sequent calculus H that
extends CFLe and consists of centered axioms and multi-conclusion semi-
analytic rules, has strong H-uniform interpolation.

Proof. The proof is a result of the combination of the Theorem 4.3 and
Theorem 4.12.

Corollary 4.14. If CFLe Ď L and L has a terminating sequent calculus
consisting of centered axioms and multi-conclusion semi-analytic rules, then
L has uniform interpolation.

Proof. The proof is a result of the combination of the Theorem 4.13 and
Theorem 4.2.

Using the Theorem 4.14, we can extend the results of [1] and [2] to:

Corollary 4.15. The logics CFLe, CFLew and CPC and their K and KD
modal versions have uniform interpolation property.

Proof. For CFLe, CFLew, since all the rules of the usual calculus of these
logics are semi-analytic and their axioms are centered and since in the absence
of the contraction rule the calculus is clearly terminating, by Theorem 4.14,
we can prove the claim. For CPC use the contraction-free calculus for which
the proof goes as the other cases.

In the negative side we use the negative results in [2], [5] and [6] to
ensure that the following logics do not have uniform interpolation. Then we
will use the Theorems 4.6, 4.10 and 4.14 to the non-existence of terminating
calculus consisting only of semi-analytic and context-sharing semi-analytic
rules together with centered axioms.

Corollary 4.16. The logics K4 and S4 do not have a terminating sequent
calculus consisting only of single conclusion (multi-conclusion) semi-analytic
and context-sharing semi-analytic rules plus some centered axioms.
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Corollary 4.17. Except the logics IPC, LC, KC, Bd2, Sm, GSc and
CPC, non of the super-intutionistic logics have a terminating sequent cal-
culus consisting only of single conclusion semi-analytic rules and context-
sharing semi-analytic rules plus some centered axioms.
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