Photosynthetica, 2017 (vol. 55), issue 4
Photosynthetica 2017, 55(4):588-602 | DOI: 10.1007/s11099-016-0674-z
Inhibition of root respiration induces leaf senescence in Alhagi sparsifolia
- 1 State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- 2 Cele National Station of Observation and Research for Desert-Grassland Ecosystem in Xinjiang, Cele, Xinjiang, China
- 3 College of Grassland and Environmental Sciences, Xinjiang Agricultural University, Urumqi, China
Leaf senescence can be induced by numerous factors. In order to explore the relationship between root respiration and leaf senescence, we utilized different types of phloem girdling to control the root respiration of Alhagi sparsifolia and its physiological response. Our results showed that both girdling and inhibition of root respiration led to a decline of stomatal conductance, photosynthesis, transpiration rate, chlorophyll (Chl) a, Chl b, carotenoid (Car) content, Chl a/b, Chl/Car, water potential, and Chl a fluorescence, as well as to an increase of abscisic acid (ABA), proline, and malondialdehyde content in leaves and to upregulation of senescence-associated gene expression. Our present work implied that both inhibition of root respiration and girdling can induce leaf senescence. In comparison with phloem girdling, the leaf senescence caused by inhibition of root respiration was less significant. The reason for girdling-induced senescence was ABA and carbohydrate accumulation. Senescence induced by inhibition of root respiration occurred due to leaf water stress resulting from inhibition of water absorption.
Keywords: carbohydrate; chlorophyll; girdling; phloem transport; photosynthetic pigment
Received: June 3, 2016; Accepted: September 7, 2016; Published: December 1, 2017Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
Supplementary files
Download file | phs-201704-0005_S1.pdf File size: 135.31 kB |
References
- Adams W.W., Winter K., Schreiber U. et al.: Photosynthesis and chlorophyll fluorescence characteristics in relationship to changes in pigment and element composition of leaves of Platanus occidentalis L. during autumnal leaf senescence. - Plant Physiol. 92: 1184-1190, 1990. Go to original source...
- Agüera E., Molina E., de la Mata L. et al.: Metabolic Regulation of Leaf Senescence in Sunflower (Helianthus annuus L.) Plants.-In: Nagata T. (ed.): Senescence. Pp. 51-68. InTech, Rijeka 2012. Go to original source...
- Appenroth K-J., Stöckel J., Srivastava A. et al.: Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. - Environ. Pollut. 115: 49-64, 2001. Go to original source...
- Besseau S., Li J., Palva E.T.: WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. - J. Exp. Bot. 63: 2667-2679, 2012. Go to original source...
- Bhupinderpal-Singh, Nordgren A., Ottosson Löfvenius M., Högberg M. et al.: Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest: extending observations beyond the first year. - Plant Cell Environ. 26: 1287-1296, 2003. Go to original source...
- Bloemen J., Agneessens L., van Meulebroek L. et al.: Stem girdling affects the quantity of CO2 transported in xylem as well as CO2 efflux from soil. - New Phytol. 201: 897-907, 2014. Go to original source...
- Bouranis D.L., Dionias A., Chorianopoulou S.N. et al.: Distribution profiles and interrelations of stomatal conductance, transpiration rate and water dynamics in young maize laminas under nitrogen deprivation. - Am. J. Plant Sci. 5: 659-670, 2014. Go to original source...
- Brouquisse R., Masclaux C., Feller U. et al.: Protein hydrolysis and nitrogen remobilisation in plant life and senescence.-In: Lea P.J., Morot-Gaudry J.-F. (ed.): Plant Nitrogen. Pp. 275-293. Springer-Verlag, Berlin 2001. Go to original source...
- Buchanan-Wollaston V., Page T., Harrison E. et al.: Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. - Plant J. 42: 567-585, 2005. Go to original source...
- Chen Y., Hou M., Liu L. et al.: The Maize DWARF1 encodes a gibberellin 3-oxidase and is dual localized to the nucleus and cytosol. - Plant Physiol. 166: 2028-2039, 2014. Go to original source...
- Dai J., Dong H.: Stem girdling influences concentrations of endogenous cytokinins and abscisic acid in relation to leaf senescence in cotton. - Acta Physiol. Plant. 33: 1697-1705, 2011. Go to original source...
- Demiral T., Türkan I.: Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. - Environ. Exp. Bot. 53: 247-257, 2005. Go to original source...
- Dong H., Niu Y., Li W. et al.: Effects of cotton rootstock on endogenous cytokinins and abscisic acid in xylem sap and leaves in relation to leaf senescence. - J. Exp. Bot. 59: 1295-1304, 2008. Go to original source...
- Frey B., Hagedorn F., Giudici F.: Effect of girdling on soil respiration and root composition in a sweet chestnut forest. - Forest Ecol. Manage. 225: 271-277, 2006. Go to original source...
- Fu W., Li P., Wu Y. et al.: Effects of different light intensities on anti-oxidative enzyme activity, quality and biomass in lettuce. - Hort. Sci. 39: 129-134, 2012.
- Fukao T., Yeung E., Bailey-Serres J. et al.: The submergence tolerance gene SUB1A delays leaf senescence under prolonged darkness through hormonal regulation in rice. - Plant Physiol. 160: 1795-1807, 2012.
- Fumuro M. et al.: Effects of trunk girdling during early shoot elongation period on tree growth, mineral absorption, water stress, and root respiration in Japanese persimmon (Diospyros kaki L.) cv. Nishimurawase. - J. Jpn. Soc. Hortic. Sci. 67: 219-227, 1998. Go to original source...
- Goldschmidt E.E., Huber S.C.: Regulation of photosynthesis by end-product accumulation in leaves of plants storing starch, sucrose, and hexose sugars. - Plant Physiol. 99: 1443-1448, 1992. Go to original source...
- Gregersen P.L., Culetic A., Boschian L. et al.: Plant senescence and crop productivity. - Plant Mol. Biol. 82: 603-622, 2013. Go to original source...
- Högberg P., Bhupinderpal-Singh, Löfvenius M.O., Nordgren A.: Partitioning of soil respiration into its autotrophic and heterotrophic components by means of tree-girdling in old boreal spruce forest. - Forest Ecol. Manage. 257: 1764-1767, 2009. Go to original source...
- Högberg P., Nordgren A., Buchmann N. et al.: Large-scale forest girdling shows that current photosynthesis drives soil respiration. - Nature 411: 789-792, 2001. Go to original source...
- Hopkins M., Taylor C., Liu Z. et al.: Regulation and execution of molecular disassembly and catabolism during senescence. - New Phytol. 175: 201-214, 2007. Go to original source...
- Jiang Y., Liang G., Yang S. et al.: Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid- and auxin-mediated signaling in jasmonic acid-induced leaf senescence. - Plant Cell 26: 230-245, 2014. Go to original source...
- Johnsen K., Maier C., Sanchez F. et al.: Physiological girdling of pine trees via phloem chilling: proof of concept. - Plant Cell Environ. 30: 128-134, 2007. Go to original source...
- Koeslin-Findeklee F., Meyer A., Girke A. et al.: The superior nitrogen efficiency of winter oilseed rape (Brassica napus L.) hybrids is not related to delayed nitrogen starvation-induced leaf senescence. - Plant Soil 384: 347-362, 2014. Go to original source...
- Kong L., Si J., Sun M. et al.: Deep roots are pivotal for regulating post-anthesis leaf senescence in wheat (Triticum aestivum L.). - J. Agron. Crop Sci. 199: 209-216, 2013. Go to original source...
- Kotakis C., Kyzeridou A., Manetas Y. et al.: Photosynthetic electron flow during leaf senescence: Evidence for a preferential maintenance of photosystem I activity and increased cyclic electron flow. - Photosynthetica 52: 413-420, 2014. Go to original source...
- Krause G., Weis E.: Chlorophyll fluorescence and photosynthesis: the basics. - Annu. Rev. Plant Biol. 42: 313-349, 1991. Go to original source...
- Kumar M., Singh V.P., Arora A. et al.: The role of abscisic acid (ABA) in ethylene insensitive Gladiolus (Gladiolus grandiflora Hort.) flower senescence. - Acta Physiol. Plant. 36: 151-159, 2014. Go to original source...
- Li C.Y., Weiss D., Goldschmidt E.E.: Girdling affects carbohydrate-related gene expression in leaves, bark and roots of alternate-bearing citrus trees. - Ann. Bot.-London 92: 137-143, 2003. Go to original source...
- Li N., Zhang S., Zhao Y. et al.: Over-expression of AGPase genes enhances seed weight and starch content in transgenic maize. - Planta 233: 241-250, 2011. Go to original source...
- Lichtenthaler H.K.: Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. - Methods Enzymol. 148: 350-382, 1987. Go to original source...
- Lim P.O., Kim H.J., Nam H.G.: Leaf senescence. - Annu. Rev. Plant Biol. 58: 115-136, 2007. Go to original source...
- Liu B., Zeng F.J., Arndt S.K. et al.: Patterns of root architecture adaptation of a phreatophytic perennial desert plant in a hyperarid desert. - S. Afr. J. Bot. 86: 56-62, 2013. Go to original source...
- Lobell D.B., Sibley A., Ortiz-Monasterio J.I.: Extreme heat effects on wheat senescence in India. - Nature Climate Change 2: 186-189, 2012. Go to original source...
- Lu Q., Lu C., Zhang J. et al.: Photosynthesis and chlorophyll a fluorescence during flag leaf senescence of field-grown wheat plants. - J. Plant Physiol. 159: 1173-1178, 2002. Go to original source...
- Merzlyak M.N., Solovchenko A.E.: Photostability of pigments in ripening apple fruit: a possible photoprotective role of carotenoids during plant senescence. - Plant Sci. 163: 881-888, 2002. Go to original source...
- Mikkelsen T.N., Heide-Jørgensen H.S.: Acceleration of leaf senescence in Fagus sylvatica L. by low levels of tropospheric ozone demonstrated by leaf colour, chlorophyll fluorescence and chloroplast ultrastructure. - Trees 10: 145-156, 1996. Go to original source...
- Mittler R., Merquiol E., Hallak-Herr E. et al.: Living under a 'dormant'canopy: a molecular acclimation mechanism of the desert plant Retama raetam. - The Plant Journal 25: 407-416, 2001. Go to original source...
- Moore B., Zhou L., Rolland F. et al.: Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. - Science 300: 332-336, 2003. Go to original source...
- Nebauer S.G., Renau-Morata B., Guardiola J.L. et al.: Photosynthesis down-regulation precedes carbohydrate accumulation under sink limitation in Citrus. - Tree Physiol. 31: 169-177, 2011. Go to original source...
- Nikinmaa E., Hölttä T., Hari P. et al.: Assimilate transport in phloem sets conditions for leaf gas exchange. - Plant Cell Environ. 36: 655-669, 2013. Go to original source...
- Noodén L.D., Guiamét J.J., John I.: Senescence mechanisms. - Physiol. Plantarum 101: 746-753, 1997. Go to original source...
- Olsson P., Linder S., Giesler R. et al.: Fertilization of boreal forest reduces both autotrophic and heterotrophic soil respiration. - Glob. Change Biol. 11: 1745-1753, 2005. Go to original source...
- Parrott D., Yang L., Shama L. et al.: Senescence is accelerated, and several proteases are induced by carbon "feast" conditions in barley (Hordeum vulgare L.) leaves. - Planta 222: 989-1000, 2005. Go to original source...
- Parrott D.L., Martin J.M., Fischer A.M.: Analysis of barley (Hordeum vulgare) leaf senescence and protease gene expression: a family C1A cysteine protease is specifically induced under conditions characterized by high carbohydrate, but low to moderate nitrogen levels. - New Phytol. 187: 313-331, 2010. Go to original source...
- Parrott D.L., McInnerney K., Feller U. et al.: Steam-girdling of barley (Hordeum vulgare) leaves leads to carbohydrate accumulation and accelerated leaf senescence, facilitating transcriptomic analysis of senescence-associated genes. - New Phytol. 176: 56-69, 2007. Go to original source...
- Peuke A.D., Windt C., Van As H.: Effects of cold-girdling on flows in the transport phloem in Ricinus communis: is mass flow inhibited? - Plant Cell Environ 29: 15-25, 2006. Go to original source...
- Pourtau N., Jennings R., Pelzer E. et al.: Effect of sugar-induced senescence on gene expression and implications for the regulation of senescence in Arabidopsis. - Planta 224: 556-568, 2006. Go to original source...
- Rahman M.M., Chongling Y., Rahman M.M. et al.: Effects of copper on growth, accumulation, antioxidant activity and malondialdehyde content in young seedlings of the mangrove species Kandelia candel (L.). - Plant Biosyst. 146: 47-57, 2012. Go to original source...
- Rivas F., Erner Y., Alós E. et al.: Girdling increases carbohydrate availability and fruit-set in citrus cultivars irrespective of parthenocarpic ability. - J. Hortic. Sci. Biotech. 81: 289-295, 2006. Go to original source...
- Rivas F., Fornes F., Rodrigo M. et al.: Changes in carotenoids and ABA content in Citrus leaves in response to girdling. - Sci. Hortic.-Amsterdam 127: 482-487, 2011.
- Robert-Seilaniantz A., Grant M., Jones J.D.: Hormone crosstalk in plant disease and defense: more than just jasmonatesalicylate antagonism. - Annu. Rev. Phytopathol. 49: 317-343, 2011. Go to original source...
- Roberts I.N., Caputo C., Criado M.V. et al.: Senescenceassociated proteases in plants. - Physiol. Plantarum. 145: 130-139, 2012. Go to original source...
- Roper T.R., Williams L.E.: Net CO2 assimilation and carbohydrate partitioning of grapevine leaves in response to trunk girdling and gibberellic acid application. - Plant Physiol. 89: 1136-1140, 1989. Go to original source...
- Sakuraba Y., Schelbert S., Park S.Y. et al.: STAY-GREEN and chlorophyll catabolic enzymes interact at light-harvesting complex II for chlorophyll detoxification during leaf senescence in Arabidopsis. - Plant Cell 24: 507-518, 2012. Go to original source...
- Setter T.L., Brun W.A., Brenner M.L.: Effect of obstructed translocation on leaf abscisic acid, and associated stomatal closure and photosynthesis decline. - Plant Physiol. 65: 1111-1115, 1980. Go to original source...
- Sitton D., Itai C., Kende H.: Decreased cytokinin production in the roots as a factor in shoot senescence. - Planta 73: 296-300, 1967. Go to original source...
- Song J., Deng W., Beaudry R.M. et al.: Changes in chlorophyll fluorescence of apple fruit during maturation, ripening, and senescence. - HortSci. 32: 891-896, 1997. Go to original source...
- Speirs J., Binney A., Collins M. et al.: Expression of ABA synthesis and metabolism genes under different irrigation strategies and atmospheric VPDs is associated with stomatal conductance in grapevine (Vitis vinifera L. cv Cabernet Sauvignon). - J. Exp. Bot. 64: 1907-1916, 2013.
- Sperotto R.A., Boff T., Duarte G.L. et al.: Increased senescenceassociated gene expression and lipid peroxidation induced by iron deficiency in rice roots. - Plant Cell Rep. 27: 183-195, 2008.
- Srivastava A., Guissé B., Greppin H.: et al.: Regulation of antenna structure and electron transport in photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. - BBA-Bioenergetics 1320: 95-106, 1997. Go to original source...
- Strasser B.J.: Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients. - Photosynth. Res. 52: 147-155, 1997. Go to original source...
- Strasser R.J., Srivastava A., Tsimilli-Michael M.: The fluorescence transient as a tool to characterize and screen photosynthetic samples.-In: Yunus M. (ed.): Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Pp. 445-483. Taylor & Francis, London, 2000.
- Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. - In: Papageorgiou G., Govindjee (ed.): Advances in Photosynthesis and Respiration. Chlorophyll Fluorescence a Signature of Photosynthesis. Pp. 321-362. Kluwer, Dordrecht 2004. Go to original source...
- Subke J.A., Hahn V., Battipaglia G. et al.: Feedback interactions between needle litter decomposition and rhizosphere activity. - Oecologia 139: 551-559, 2004. Go to original source...
- Tang G.L., Li X.Y., Lin L.S. et al.: Combined effects of girdling and leaf removal on fluorescence characteristic of Alhagi Sparsifolia leaf senescence. - Plant Biol. 17: 980-989, 2015a. Go to original source...
- Tang G.L., Li X.Y., Lin L.S. et al.: Girdling-induced Alhagi sparsifolia senescence and chlorophyll fluorescence changes. - Photosynthetica 53: 585-596, 2015b. Go to original source...
- Tang G.L., Li X.Y., Lin L.S. et al.: Impact of girdling and leaf removal on Alhagi sparsifolia leaf senescence. - Plant Growth Regul. 78: 205-216, 2016. Go to original source...
- Tschaplinski T.J., Blake T.J.: Effects of root restriction on growth correlations, water relations and senescence of alder seedlings. - Physiol. Plantarum 64: 167-176, 1985. Go to original source...
- Urban L., Alphonsout L.: Girdling decreases photosynthetic electron fluxes and induces sustained photoprotection in mango leaves. - Tree Physiol. 27: 345-352, 2007. Go to original source...
- van Heerden P.D., Strasser R.J., Krüger G.H.: Reduction of dark chilling stress in N2-fixing soybean by nitrate as indicated by chlorophyll a fluorescence kinetics. - Physiol. Plantarum 121: 239-249, 2004. Go to original source...
- Veselov D.S., Sharipova G.V., Veselov S.U. et al.: The effects of NaCl treatment on water relations, growth, and ABA content in barley cultivars differing in drought tolerance. - J. Plant Growth Regul. 27: 380-386, 2008. Go to original source...
- Vogelmann K., Drechsel G., Bergler J. et al.: Early senescence and cell death in Arabidopsis saul1 mutants involves the PAD4-dependent salicylic acid pathway. - Plant Physiol. 159: 1477-1487, 2012. Go to original source...
- Vysotskaya L., Kudoyarova G., Veselov S. et al.: Unusual stomatal behaviour on partial root excision in wheat seedlings. - Plant Cell Environ. 27: 69-77, 2004. Go to original source...
- Wang S., Hu L., Sun J. et al.: Effects of exogenous abscisic acid on leaf carbohydrate metabolism during cucumber seedling dehydration. - Plant Growth Regul. 66: 87-93, 2012. Go to original source...
- Williams L.E., Araujo F.J.: Correlations among predawn leaf, midday leaf, and midday stem water potential and their correlations with other measures of soil and plant water status in Vitis vinifera. - J. Am. Soc. Hortic. Sci. 127: 448-454, 2002. Go to original source...
- Williams L.E., Baeza P., Vaughn P. et al.: Midday measurements of leaf water potential and stomatal conductance are highly correlated with daily water use of Thompson Seedless grapevines. - Irrigation Sci. 30: 201-212, 2012. Go to original source...
- Williams L.E., Retzlaff W.A., Yang W. et al.: Effect of girdling on leaf gas exchange, water status, and non-structural carbohydrates of field-grown Vitis vinifera L.(cv. Flame Seedless). - Am. J. Enol. Viticult. 51: 49-54, 2000.
- Yang J., Zhang J., Wang Z. et al.: Abscisic acid and cytokinins in the root exudates and leaves and their relationship to senescence and remobilization of carbon reserves in rice subjected to water stress during grain filling. - Planta 215: 645-652, 2002. Go to original source...
- Yang J., Zhang J., Wang Z. et al.: Involvement of abscisic acid and cytokinins in the senescence and remobilization of carbon reserves in wheat subjected to water stress during grain filling. - Plant Cell Environ. 26: 1621-1631, 2003. Go to original source...
- Yang X.Y., Wang F.F., Teixeira da Silva J.A. et al. Branch girdling at fruit green mature stage affects fruit ascorbic acid contents and expression of genes involved in l-galactose pathway in citrus. - N. Zeal. J. Crop Hort. 41: 23-31, 2013. Go to original source...
- Yordanov I., Goltsev V., Stefanov D. et al.: Preservation of photosynthetic electron transport from senescence-induced inactivation in primary leaves after decapitation and defoliation of bean plants. - J. Plant Physiol. 165: 1954-1963, 2008.
- Zwack P.J., Robinson B.R., Risley M.G. et al.: Cytokinin response factor 6 negatively regulates leaf senescence and is induced in response to cytokinin and numerous abiotic stresses. - Plant Cell Physiol. 54: 971-981, 2013. Go to original source...