Photosynthetica, 2016 (vol. 54), issue 4

Photosynthetica 2016, 54(4):517-523 | DOI: 10.1007/s11099-016-0211-0

In silico, in vitro and in vivo approach in understanding the functional relationship between ergosterol and Rubisco

J. Mitra1, P. Narad1, P. K. Paul1,*
1 Amity Institute of Biotechnology, Amity University Uttar Pradesh, NOIDA, India

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) is one of the key enzymes involved in assimilation of CO2 in chloroplasts. Phylloplane microfungi and their metabolites have been reported to affect the physiology of host plants, particularly, their photosynthesis. However, information is lacking on the effect of these microflora on the physiology of chloroplasts. The current study emphasized the impact of two dominant phylloplane fungi, Aspergillus niger and Fusarium oxysporum, on activity of Rubisco in tomato chloroplasts. Ergosterol, which is a component of only fungal cell membranes and is not synthesized by plants, have been demonstrated to elicit activity of Rubisco. In the present study, it was demonstrated through in silico, in vitro, and in vivo approaches. Results demonstrated that the fungal metabolites, which contained ergosterol, could double Rubisco activity. Maximum carboxylation rate of Rubisco increased also in ergosterol-treated plants. Michaelis-Menten constant of Rubisco was also slightly affected. Ergosterol was found also to influence and enhance the binding of CO2 and ribulose-1,5-bisphosphate to Rubisco. Therefore we can postulate that the physiology of the chloroplast is probably influenced by phylloplane microfungi.

Keywords: enzyme activity; ergosterol; phylloplane; Rubisco; tomato

Received: July 20, 2015; Accepted: February 8, 2016; Published: December 1, 2016Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Mitra, J., Narad, P., & Paul, P.K. (2016). In silico, in vitro and in vivo approach in understanding the functional relationship between ergosterol and Rubisco. Photosynthetica54(4), 517-523. doi: 10.1007/s11099-016-0211-0.
Download citation

References

  1. Amborabé B.E., Rossard S., Pérault J.M., Roblin G. Specific perception of ergosterol by plant cells.-CR Biol. 326: 363-370, 2003. Go to original source...
  2. Aneja K.R.: Experiments in Microbiology, Plant Pathology and Biotechnology. 4th ed. Pp. 147-156. New Age International, New Delhi 2003.
  3. Arthington-Skaggs B.A., Jradi H., Desai T., Morrison C.J.: Quantitation of ergosterol content: novel method for determination of fluconazole susceptibility of Candida albicans.-J. Clin. Microbiol. 37: 3332-3337, 1999. Go to original source...
  4. Boller T.: Chemoperception of microbial signals in plant cells.-Annu. Rev. Plant Biol. 46: 189-214, 1995. Go to original source...
  5. Bota J., Flexas J., Keys A.J. et al.: CO2/O2 specificity factor of ribulose-1,5-bisphosphate carboxylase/oxygenase in grapevines (Vitis vinifera L.): First in vitro determination and comparison to in vivo estimations.-Vitis 41: 163-168, 2002.
  6. Bowes G.: Growth at elevated CO2: photosynthetic responses mediated through Rubisco.-Plant Cell Environ. 14: 795-806, 1991. Go to original source...
  7. Bradford M.M.: A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein-dye binding.-Anal. Biochem. 72: 248-254, 1976. Go to original source...
  8. Carmo-Silva E., Scales J.C., Madgwick P.J., Parry M.A.: Optimizing Rubisco and its regulation for greater resource use efficiency.-Plant Cell Environ. 38: 1817-1832, 2014.
  9. Carpita N., Sabularse D., Montezinos D., Delmer D.P.: Determination of the pore size of cell walls of living plant cells.-Science 205: 1144-1147, 1979. Go to original source...
  10. Compant S., Reiter B., Sessitsch A. et al.: Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN.-Appl. Environ. Microb. 71: 1685-1693, 2005. Go to original source...
  11. Dadáková K., Klempová J., Jendrišáková T. et al.: Elucidation of signaling molecules involved in ergosterol perception in tobacco.-Plant Physiol. Bioch. 73: 121-127, 2013. Go to original source...
  12. Diekmann K., Hodkinson T.R., Fricke E., Barth S.: An optimized chloroplast DNA extraction protocol for grasses (Poaceae) proves suitable for whole plastid genome sequencing and SNP detection.-PLoS One 3: e2813, 2008. Go to original source...
  13. Dixon R.A., Harrison M.J., Lamb C.J.: Early events in the activation of plant defense responses.-Annu. Rev. Phytopathol. 32: 479-501, 1994. Go to original source...
  14. Felix G., Duran J.D., Volko S., Boller T.: Plants have a sensitive perception system for the most conserved domain of bacterial flagellin.-Plant J. 18: 265-276, 1999. Go to original source...
  15. Ghoorah A.W., Devignes M.D., Smaïl-Tabbone M., Ritchie D.W.: Protein docking using case-based reasoning.-Proteins 81: 2150-2158, 2013. Go to original source...
  16. Kašparovský T., Blein J.P., Mikeš V.: Ergosterol elicits oxidative burst in tobacco cells via phospholipase A2 and protein kinase C signal pathway.-Plant Physiol. Bioch. 42: 429-435, 2004. Go to original source...
  17. Kauss H., Jeblick W.: Influence of salicylic acid on the induction of competence for H2O2 elicitation (comparison of ergosterol with other elicitors).-Plant Physiol. 111:755-763, 1996. Go to original source...
  18. Kellenberger E., Rodrigo J., Muller P., Rognan D.: Comparative evaluation of eight docking tools for docking and virtual screening accuracy.-Proteins 57: 225-242, 2004. Go to original source...
  19. Kloppholz S., Kuhn H., Requena N.: A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy.-Curr. Biol. 21: 1204-1209, 2011. Go to original source...
  20. Laskowski R.A., Swindells M.B.: LigPlot+: multiple ligandprotein interaction diagrams for drug discovery.-J. Chem. Inf. Model 51: 2778-2786, 2011. Go to original source...
  21. Meenakshi S., Srisudha S.: In silico characterization and homology modeling of cyanobacterial Rubisco (LS) with computational tools and bioinformatic servers.-Helix 4: 185-191, 2012.
  22. Mitra J., Sahi A.N., Paul P.K.: Phylloplane microfungal metabolite influences activity of Rubisco.-Arch. Phytopathol. Pfl. 47: 584-590, 2014. Go to original source...
  23. Parry M.A.J., Andralojc P.J., Mitchell R.A. et al.: Manipulation of Rubisco: the amount, activity, function and regulation.-J. Exp. Bot. 54: 1321-1333, 2003. Go to original source...
  24. Pérez-Donoso A.G., Sun Q., Roper M.C. et al.: Cell walldegrading enzymes enlarge the pore size of intervessel pit membranes in healthy and Xylella fastidiosa-infected grapevines.-Plant Physiol. 152: 1748-1759, 2010. Go to original source...
  25. Portis A.R.: Regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase activity.-Annu. Rev. Plant Biol. 43: 415-437, 1992.
  26. Savoie J.M., Mata G.: Trichoderma harzianum metabolites preadapt mushrooms to Trichoderma aggressivum antagonism-Mycologia 95: 191-199, 2003. Go to original source...
  27. Tardieu D., Bailly J.D., Benard G., Guerre P.: Comparison of two extraction methods for ergosterol determination in vegetal feeds.-Rev. Med. Vet.-Toulouse 158: 442-446, 2007.
  28. Theobald J.C., Mitchell R.A., Parry M.A., Lawlor D.W.: Estimating the excess investment in ribulose-1,5-bisphosphate carboxylase/oxygenase in leaves of spring wheat grown under elevated CO2.-Plant Physiol. 118: 945-955, 1998. Go to original source...
  29. van Lun M., Hub J.S., van der Spoel D., Andersson I.: CO2 and O2 distribution in Rubisco suggests the small subunit functions as a CO2 reservoir.-J. Am. Chem. Soc. 136: 3165-3171, 2014. Go to original source...
  30. Vatsa P., Chiltz A., Luini E. et al.: Cytosolic calcium rises and related events in ergosterol-treated Nicotiana cells.-Plant Physiol. Bioch. 49: 764-773, 2011. Go to original source...
  31. Wang C., Fan X., Wang G. et al.: Differential expression of Rubisco in sporophytes and gametophytes of some marine macroalgae.-PloS One 6: e16351, 2011. Go to original source...
  32. Weete J.D., Abril M., Blackwell M.: Phylogenetic distribution of fungal sterols.-PloS One 5: e10899, 2010. Go to original source...
  33. Zhang N., Kallis R.P., Ewy R.G., Portis A.R.: Light modulation of Rubisco in Arabidopsis requires a capacity for redox regulation of the larger Rubisco activase isoform.-P. Natl. Acad. Sci. USA 99: 3330-3334, 2002. Go to original source...