Photosynthetica, 2020 (vol. 58), 1

Photosynthetica 2020, 58(1):45-53 | DOI: 10.32615/ps.2019.140

Photosynthetic activity of common buckwheat (Fagopyrum esculentum Moench) exposed to thermal stress

M. HORNYÁK1, A. PŁAŻEK1, P. KOPEĆ2, M. DZIURKA2, J. PASTUSZAK1, A. SZCZERBA1, T. HURA2
1 Department of Plant Physiology, University of Agriculture, Podłużna 3, 30-239 Kraków, Poland
2 The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland

The aim of the work was to investigate thermal stress effect on photosynthetic activity of common buckwheat. Seedlings of common buckwheat were exposed to 20°C (control) and 30°C (thermal stress). The research involved the Polish cultivar 'Panda' and strain PA15 and determined kinetics of chlorophyll a fluorescence (Chlf), leaf gas exchange, soluble carbohydrate (SC) content in donor leaves, electrolyte leakage as a parameter of cell membrane permeability, and amount of abscisic acid and jasmonates. In 'Panda' and PA15 plants grown at 30°C, most of Chlf parameters improved. 'Panda' plants grown at 30°C demonstrated a higher increase in net photosynthetic rate, lower transpiration rate, and smaller SC reduction than those of PA15 strain. At this temperature, 'Panda' leaves accumulated greater amounts of jasmonates than that of the control. We concluded that studied genotypes demonstrated disparate responses to thermal stress, but for both, 30°C is more favourable temperature for vegetative growth than 20°C.

Keywords: heat stress; ion leakage; photochemical efficiency; water-use efficiency.

Received: June 20, 2019; Accepted: October 22, 2019; Prepublished online: November 26, 2019; Published: March 10, 2020Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
HORNYÁK, M., PŁAŻEK, A., KOPEĆ, P., DZIURKA, M., PASTUSZAK, J., SZCZERBA, A., & HURA, T. (2020). Photosynthetic activity of common buckwheat (Fagopyrum esculentum Moench) exposed to thermal stress. Photosynthetica58(1), 45-53. doi: 10.32615/ps.2019.140.
Download citation

References

  1. Adachi T.: How to combine the reproductive system with biotechnology in order to overcome the breeding barrier in buckwheat? - Fagopyrum 10: 7-11, 1990.
  2. Aneja M., Gianfagna T., Ng E.: The roles of abscisic acid and ethylene in the abscission and senescence of cocoa flowers. - Plant Growth Regul. 27: 149-155, 1999. Go to original source...
  3. Athar H., Ashraf M.Y.: Photosynthesis under drought stress. - In: Pessarakli M. (ed.): Photosynthesis. 2nd Edition. Pp. 795-810. CRC Press, New York 2005. Go to original source...
  4. Bernier G., Havelange A., Houssa C. et al.: Physiological signals that induce flowering. - Plant Cell 5: 1147-1155, 1993.
  5. Beyel V., Brüggemann W.: Differential inhibition of photosyn-thesis during pre-flowering drought stress in Sorghum bicolor (L.) Moench genotypes with different senescence traits. - Physiol. Plantarum 124: 249-259, 2005. Go to original source...
  6. Bravo L.A., Zúñiga G.A., Alberdi M., Corcuera L.J.: The role of ABA in freezing tolerance and cold acclimation in barley. - Physiol. Plantarum 103: 17-23, 1998. Go to original source...
  7. Cawoy V., Deblauwe V., Halbrecq B. et al.: Morph differences and honeybee morph preference in the distylous species Fagopyrum esculentum Moench. - Int. J. Plant Sci. 167: 853-861, 2006. Go to original source...
  8. Cawoy V., Ledent J.F., Kinet J.M., Jacquemart A.L.: Floral biology of common buckwheat (Fagopyrum esculentum Moench). - Eur. J. Plant Sci. Biotech. 3: 1-9, 2009.
  9. Christa K., Soral-Śmietana M.: Buckwheat grains and buckwheat products - nutritional and prophylactic value of their components - a review. - Czech J. Food Sci. 26: 153-162, 2008. Go to original source...
  10. Conroy J.P., Seneweera S., Basra A.S. et al.: Influence of rising atmospheric CO2 concentrations and temperature on growth, yield and grain quality of cereal crops. - Aust. J. Plant Physiol. 21: 741-758, 1994. Go to original source...
  11. Demmig B., Winter K., Krüger A., Czygan F.C.: Photoinhibition and zeaxanthin formation in intact leaves. A possible role of the xanthophyll cycle in the dissipation of excess light energy. - Plant Physiol. 84: 218-224, 1987. Go to original source...
  12. Downton J.Y., Slatyer R.O.: Temperature dependence of photosynthesis in cotton. - Plant Physiol. 50: 518-522, 1972. Go to original source...
  13. Dziurka M., Janeczko A., Juhász C. et al.: Local and systemic hormonal responses in pepper leaves during compatible and incompatible pepper-tobamovirus interactions. - Plant Physiol. Bioch. 109: 355-364, 2016. Go to original source...
  14. FAOSTAT: Food and Agriculture Organisation of the United Nations Online Database, 2019. (Available at: http:// www.fao.org/statistics/en/)
  15. Farooq S., Rehman R.U., Pirzadah T.B. et al.: Cultivation, agronomic practices, and growth performance of buckwheat. -In: Meilinag Z., Kreft I., Woo S.-H. et al. (ed.): Molecular Breeding and Nutritional Aspects of Buckwheat. Pp. 299-320. Academic Press, Oxford 2016. Go to original source...
  16. Ferrante A., Vernieri P., Tognoni F., Serra G.: Changes in abscisic acid and flower pigments during floral senescence of Petunia. - Biol. Plantarum 50: 581-585, 2006. Go to original source...
  17. Filek M., Walas S., Mrowiec H. et al.: Membrane permeability and micro- and macroelement accumulation in spring wheat cultivars during the short-term effect of salinity-and PEG-induced water stress. - Acta Physiol. Plant. 34: 985-995, 2012. Go to original source...
  18. Garber M.P.: Effect of light and chilling temperatures on chilling-sensitive and chilling-resistant plants. Pre-treatment of cucumber and spinach thylakoids in vivo and in vitro. - Plant Physiol. 59: 981-985, 1977. Go to original source...
  19. Gulen H., Eris A.: Effect of heat stress on peroxidase activity and total protein content in strawberry plants. - Plant Sci. 166: 739-744, 2004. Go to original source...
  20. Halbrecq B., Romedenne P., Ledent J.F.: Evolution of flowering, ripening and seed set in buckwheat (Fagopyrum esculentum Moench.): Quantitative analysis. - Eur. J. Agron. 23: 209-224, 2005. Go to original source...
  21. Harley P.C., Sharkey T.D.: An improved model of C3 photosyn-thesis at high CO2: Reversed O2 sensitivity explained by lack of glycerate reentry into the chloroplast. - Photosynth. Res. 27: 169-178, 1991.
  22. Havaux M., Tardy F., Ravenel J. et al.: Thylakoid membrane stability to heat stress studied by flash spectroscopic measure-ments of the electrochromic shift in intact potato leaves: Influence of the xanthophyll content. - Plant Cell Environ. 19: 1359-1368, 1996. Go to original source...
  23. Hura T., Hura K., Grzesiak M.T., Rzepka A.: Effect of longterm drought stress on leaf gas exchange and fluorescence parameters in C3 and C4 plants. - Acta Physiol. Plant. 29: 103-113, 2007. Go to original source...
  24. Hura T., Hura K., Ostrowska A., Dziurka K.: Rapid plant rehydration initiates permanent and adverse changes in the photosynthetic apparatus of triticale. - Plant Soil 397: 127-145, 2015. Go to original source...
  25. Iqbal A., Hiradate S., Noda A. et al.: Allelopathy of buckwheat: Assessment of allelopathic potential of extract of aerial parts of buckwheat and identification of fagomine and other related alkaloids as allelochemicals. - Weed Biol. Manag. 2: 110-115, 2006.
  26. James R.A., Rivelli A.R., Munns R., von Caemmerer S.: Factors affecting CO2assimilation, leaf injury and growth in salt-stressed durum wheat. - Funct. Plant Biol. 29: 1393-1403, 2002. Go to original source...
  27. Jumrani K., Bhatia V.S., Pandey G.P.: Impact of elevated temperatures on specific leaf weight, stomatal density, photosynthesis and chlorophyll fluorescence in soybean. - Photosynth. Res. 131: 333-350, 2017. Go to original source...
  28. Kalaji H.M., Jajoo A., Oukarroum A. et al.: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. - Acta Physiol. Plant. 38: 102, 2016. Go to original source...
  29. Lazár D.: Chlorophyll a fluorescence induction. - BBA-Bioenergetics 1412: 1-28, 1999. Go to original source...
  30. Lichtenhaler H.K.: Vegetation stress: An introduction to the stress concept in plants. - J. Plant Physiol. 148: 4-14, 1996. Go to original source...
  31. Lobell D.B., Burke M.B., Tebaldi C. et al.: Prioritizing climate change adaptation needs for food security in 2030. - Science 319: 607-610, 2008. Go to original source...
  32. Mathur S., Agrawal D., Jajoo A.: Photosynthesis: Limitations in response to high temperature stress. - J. Photoch. Photobio. B 137: 116-126, 2014. Go to original source...
  33. Medrano H., Tomás M., Martorell S. et al.: From leaf to whole-plant water use efficiency (WUE) in complex canopies: Limitations of leaf WUE as a selection target. - Crop J. 3: 220-228, 2015. Go to original source...
  34. Moradi F., Ismail A.M.: Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging system to salt stress during seedling and reproductive stages in rice. - Ann. Bot.-London 99: 1161-1173, 2007. Go to original source...
  35. Munns R., James R.: Screening methods for salinity tolerance: a case study with tetraploid wheat. - Plant Soil 253: 201-218, 2003. Go to original source...
  36. Niu S.L., Li L.H., Jiang G.M. et al.: Gas exchange and chlorophyll fluorescence response to simulated rainfall in Hedysarum fruticosum var. mongolicum. - Photosynthetica 42: 1-6, 2004. Go to original source...
  37. Piao S.P., Ciais P., Friedlingstein P. et al.: Net carbon dioxide losses of northern ecosystems in response to autumn warming. - Nature 451: 49-52, 2008. Go to original source...
  38. Płażek A., Dubert F., Kościelniak J. et al.: Tolerance of Miscanthus × giganteus to salinity depends on initial weight of rhizomes as well as high accumulation of potassium and proline in leaves. - Ind. Crop. Prod. 52: 278-285, 2014.
  39. Płażek A., Słomka A., Kopeć P. et al: Effects of high temperature on embryological development and hormone profile in flowers and leaves of common buckwheat (Fagopyrum esculentum Moench). - Int. J. Mol. Sci. 20: 1705, 2019.
  40. Rawson H.M.: Plant responses to temperature under conditions of elevated CO2. - Aust. J. Bot. 40: 473-490, 1992. Go to original source...
  41. Santarius K.A.: Membrane lipids in heat injury of spinach chloroplasts. - Physiol. Plantarum 49: 1-6, 1980. Go to original source...
  42. Seo H.S., Song J.T., Cheong J.J. et al.: Jasmonic acid carboxyl methyltransferase: A key enzyme for jasmonate-regulated plant responses. - P. Natl. Acad. Sci. USA 98: 4788-4793, 2001. Go to original source...
  43. Sharkey T.D., Schrader S.M.: High temperature stress. - In: Rao K.V.M., Raghavendra A.S., Reddy K.J. (ed.): Physiology and Molecular Biology of Stress Tolerance in Plants. Pp. 101-129. Springer, Berlin 2006. Go to original source...
  44. Skoczowski A., Filek M.: Cold-induced changes in lipids from hypocotyls of winter and spring rape. I. The lipid synthesis and fatty acids composition. - Acta Physiol. Plant. 48: 203-212, 1986.
  45. Slawinska J., Obendorf R.L.: Buckwheat seed set in planta and during in vitro inflorescence culture: evaluation of temperature and water deficit stress. - Seed Sci. Res. 11: 223-233, 2001.
  46. Słomka A., Michno K., Dubert F. et al.: Embryological background of low seed set in distylous common buckwheat (Fagopyrum esculentum Moench) with biased morph ratios, and biostimulant-induced improvement of it. - Crop Pasture Sci. 68: 680-690, 2017.
  47. Strasser R.J., Srivastava A., Tsimilli-Michael M.: The fluores- cence transient as a tool to characterize and screen photo-synthetic samples. - In: Yunus M., Pathre U., Mohanty P. (ed.): Probing Photosynthesis: Mechanism, Regulation and Adaptation. Pp. 445-483. CRC Press, New York 2000.
  48. Taylor D.P., Obendorf R.L.: Quantitative assessment of some factors limiting seed set in buckwheat. - Crop Sci. 41: 1792-1799, 2001. Go to original source...
  49. van Kooten O., Snel J.F.H.: The use of chlorophyll fluorescence nomenclature in plant stress physiology. - Photosynth. Res. 25: 147-150, 1990. Go to original source...
  50. Wahid A., Gelani S., Ashraf M., Foolad M.R.: Heat tolerance in plants: an overview. - Environ. Exp. Bot. 61: 199-223, 2007. Go to original source...
  51. Wang Y.H., Irving H.R.: Developing a model of plant hormone interactions. - Plant Signal. Behav. 6: 494-500, 2011. Go to original source...
  52. Wullschleger S.D.: Biochemical limitations to carbon assimila-tion in C3 plants - A retrospective analysis of the A/Ci curves from 109 species. - J. Exp. Bot. 44: 907-920, 1993. Go to original source...
  53. Yemm E.W., Willis A.J.: The estimation of carbohydrates in plant extracts by anthrone. - Biochem. J. 57: 508-514, 1954. Go to original source...
  54. Yoshida S., Uemura M.: Responses of the plasma membrane to cold acclimation and freezing stress. - In: Larsson C., Møller I.M. (ed.): The Plasma Membrane. Structure, Function and Molecular Biology. Pp. 293-319. Springer Verlag, Berlin 1990. Go to original source...