Photosynthetica, 2011 (vol. 49), issue 4

Photosynthetica 2011, 49(4):627-632 | DOI: 10.1007/s11099-011-0079-y

Nondestructive, simple, and accurate model for estimation of the individual leaf area of som (Persea bombycina)

S. Chattopadhyay1,*, A. Tikader1, N. K. Das2
1 Regional Muga Research Station, Central Silk Board, Boko, India
2 Central Sericultural Research and Training Institute, Central Silk board, Berhampore, India

Nondestructive approach of modeling leaf area could be useful for plant growth estimation especially when number of available plants is limited and/or experiment demands repeated estimation of leaf area over a time scale. A total of 1,280 leaves were selected randomly from eight different morphotypes of som (Persea bombycina) established at randomized complete block design under recommended cultural regimes in field. Maximum leaf laminar width (B), length (L) and their squares B2, L2; leaf area (LA), and lamina length × width (L×B) were determined over two successive seasons. Leaf parameters were significantly affected by morphotypes; but seasons had nonsignificant impacts on tested features. Therefore, pooled seasonal morphotype means of each parameter were used to establish relationship with LA. L and its square L2 did not provide accurate models for LA predictions. Considerably better models were obtained by using B (y = 2.984 + 7.9664 x, R 2 = 0.615, P≥0.001, n = 119) and B2 (y = 12.784+ 0.9604 x, R 2 = 0.605, P≥0.001, n = 119) as independent variables. However, maximum accuracy of prediction of LA could be achieved through a simple linear relationship of L×B (y = 8.2203 + 0.4224 x, R 2 = 0.843, P≥0.0001, n = 119). The model (LA:L×B) was validated with randomly selected leaf samples (n = 360) of som morphotypes and highly significant (P≤0.001) linear function was found between actual and predicted LAs. Therefore, the last model may consider adequate to predict leaf area of all cultivars of som with sufficient fidelity.

Keywords: leaf area prediction; leaf length; leaf width; nondestructive methods; regression model; validation

Received: December 3, 2010; Accepted: October 18, 2011; Published: December 1, 2011Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Chattopadhyay, S., Tikader, A., & Das, N.K. (2011). Nondestructive, simple, and accurate model for estimation of the individual leaf area of som (Persea bombycina). Photosynthetica49(4), 627-632. doi: 10.1007/s11099-011-0079-y.
Download citation

References

  1. Bhatt, M., Chanda, S.V.: Prediction of leaf area in Phaseolus vulgaris by non destructive method. - Bulg. J. Plant Physiol. 29: 96-100, 2003.
  2. Bhau, B.S., Medhi, K., Das, A.P., Saikia, S.P., Neog, K., Choudhury, S.N.: Analysis of genetic diversity of Persea bombycina 'som' using RAPD-based molecular markers. - Biochem. Genet. 47: 486-497, 2009. Go to original source...
  3. Camargo Neto, J., Meyer, G.E., Jones, D.D., Samal, A.K.: Plant species identification using elliptic fourier leaf shape analysis. - Comp. Electron. Agr. 50: 121-134, 2006. Go to original source...
  4. Celik, H., Uzun, S.: Validation of leaf area estimation models (uzeclik-1) evaluated for some horticultural plants. - Pak. J. Bot. 34: 41-46, 2002.
  5. Cemek, B., Unlukara, A., Kurunc, A.: Nondestructive leaf-area estimation and validation for green pepper (Capsicum annuum L.). - Photosynthetica 49: 98-106, 2011. Go to original source...
  6. Chakravorti, R., Phukan, J.C.D., Barah, A., Sarmah, M.C., Neog, K.: A decade of research in muga, eri and mulberry. Central Muga Eri Research and Training Institute, Central Silk Board, Lahdoigarh, Assam 2005.
  7. Choudhuri, S.N.: Muga Silk Industry. Pp. 1-31. Directorate of Sericulture and Weaving, Govornment of Assam, Guwahati 1981.
  8. Cirak, C., Obabas, M.S., Saglam, B., Ayan, A.K.: Relation between leaf area and dimensions of selected medicial plants. - Res. Agr. Eng. 51: 13-19, 2005. Go to original source...
  9. Cristofori, V., Fallovo C., Mendoza-de Gyves, E., Rivera, C.M., Bignami, C., Rouphael, Y.: Non-destructive, analogue model for leaf area estimation in persimmon (Diospyros kaki L.f.) based on leaf length and width measurement. - Europ. J. Hort. Sci. 73: 216-221, 2008.
  10. Cristofori, V., Rouphael, Y., Mendoza-de Gyves, E., Bignami, C.: A simple model for estimating leaf area of hazelnut from linear measurements. - Scientia Hort. 113: 221-225, 2007. Go to original source...
  11. Demirsoy, H., Demirsoy, L., Ozturk, A.: Improved model for the non-destructive estimation of strawberry leaf area. - Fruits 60: 69-73, 2005. Go to original source...
  12. Demirsoy, H., Demirsoy, L., Uzun, S., Ersoy, B.: Nondestructive leaf area estimation in peach. - Eur. J. Hort. Sci. 69: S.144-S.146, 2004.
  13. Demirsoy, H., Demirsoy, L.: A validated leaf area prediction model for some cherry cultivars in Turkey. - Pak. J. Bot. 35: 361-367, 2003.
  14. Du, J.X., Wang, X.F., Zhang, G.J.: Leaf shape based plant species recognition. - Appl. Math. Comput. 185: 883-893, 2007. Go to original source...
  15. Elsner, E.A., Jubb, G.L., Jr.: Leaf area estimation of concord grape leaves from simple linear measurements. - Amer. J. Enol. Viticult. 39: 95-97, 1988.
  16. Fallovo, C., Cristofori, V., Mendoza-de Gyves, E., Rivera C.M., Rea, R., Fanasca, S.: Leaf area estimation model for small fruits from linear measurements. - HortScience 43: 2263-2267. Go to original source...
  17. Gamper, H.: Non-destructive estimates of leaf area in white clover using predictive formulae: The contribution of genotype identity to trifoliate leaf area. - Crop Sci. 45: 2552-2556, 2005. Go to original source...
  18. Gill, J.L.: Outliners, residuals, and influence in multiple regression. - J. Anim. Breed. Genet. 103: 161-175, 1986. Go to original source...
  19. Gomez, K., Gomez, A.A.: Statistical Procedure for Agricultural Research. John Wiley & Sons, New York 1984.
  20. Jonckheere, I., Fleck, S., Nackaerts, K., Muys, B., Coppin, P., Weiss, M., Baret, F.: Review of methods for in situ leaf area index determination. Part I. Theories, sensors and hemispherical photography. - Agr. Forest. Meteor. 121: 19-35, 2004. Go to original source...
  21. Kumar, R., Sharma, S.: Allometric model for nondestructive leaf area estimation in clay sage (Salvia sclarea L.) - Photosynthetica 48: 313-316, 2010. Go to original source...
  22. Lu, H.-Y., Lu, C.-T., Wei, M.-L., Chen, L.-F.: Comparision of different models for non-destructive leaf area estimation in taro. - Agron. J. 96: 448-453, 2004. Go to original source...
  23. Marquardt, D.W.: Generalized inverse, ridge regression, biased linear estimation, and nonlinear estimation. - Technometrics 12: 591-612, 1970. Go to original source...
  24. Montero, F.J., Juan, J.A., Cuesta, A., Brasa, A.: Non-destructive methods to estimate leaf area in Vitis vinifera L. - HortScience 35: 699-698, 2000. Go to original source...
  25. Montgomery, D.C., Peck, E.A.: Introduction to linear regression analysis. John Wiley and sons, New York 1992.
  26. Nakamura, S., Nitta, Y., Watanabe, M., Goto, Y.: Analysis of leaflet shape and area for improvement of leaf area estimation method for sago palm (Metroxylon sagu Roxb.). - Plant Prod. Sci. 8: 27-31, 2005. Go to original source...
  27. Rouphael Y., Mouneimne, A.H., Ismail, A., Mendoza-De Gyves, E., Rivera, C.M., Colla G.: Modeling individual leaf area of rose (Rosa hybrid L.) based on leaf length and width measurement. - Photosynthetica 48: 9-15, 2010. Go to original source...
  28. Rouphael, Y., Rivera, C.M., Cardarelli, M., Fanasca, S., Colla, G.: Leaf area estimation from linear measurements in zucchini plants of different ages. - J. Hortic. Sci. Biotechnol. 81: 238-241, 2006. Go to original source...
  29. Serdar, U., Demirsoy, H. Non-destructive leaf area estimation in chestnut. - Scientia Hort. 108: 227-230, 2006. Go to original source...
  30. Seth, M.K.: Food plants of muga silkworm. In: Agrawal, H.o., Seth, M.K. (eds.): Sericulture in India, Vol. 4. Pp. 887-893, BSMPS Publishers, Dehradun 2000.
  31. Singh, K., Srivatava, A., Prakash, D., Das, P.K., Siddiqui, A.A., Raghuvanshi, S.S.: Ranking of foliar constituents in morphotypes of muga food plants Machilus bombycina King. - Sericologia 40: 279-283, 2000.
  32. Smith, R.J., Kliewer, W.M.: Estimation of Thompson seedless graipevine leaf area. - Amer. J. Enol. Vitie. 35: 16-22, 1984.
  33. Tazima, Y., Choudhury, S.N.: Biology of silkworm and host plants. In: Choudhury, S.N. (ed.): Muga Culture. Pp. 299-305. GB Publishers, Dibrugarh, India, 2005.
  34. Tsialtas, J.T., Koundouras, S., Zioziou, E.: Leaf area estimation by simple measurements and evaluation of leaf area prediction models in Cabernet- Sauvignon grapevine leaves. - Photosynthetica 46: 452-456, 2008. Go to original source...
  35. Tsialtas, J.T., Maslaris, N.: Leaf area estimation in a sugar beet cultivar by linear model. - Photosynthetica 43: 477-479, 2005. Go to original source...
  36. Tsialtas, J.T., Maslaris, N.: Leaf shape and its relationship with leaf area index in sugar beet (Beta vulgaris L.) cultivar. - Photosynthetica 45: 527-532, 2007. Go to original source...
  37. Tsialtas, J.T., Maslaris, N.: Leaf area prediction model for sugar beet (Beta vulgaris L.) cultivars. - Photosynthetica 46: 291-293, 2008. Go to original source...
  38. Uzun, S., Celik, H.: Leaf area prediction models (ureclik -1) for different horticultural plants. - Tr. J. Agric. For. 23: 645-650, 1999.
  39. Yadav, G.S., Goswami, B.C.: Correlation and regression studies between leaf length and length-breadth ration of different morphotypes of som (Machilus bombycina King). - Sericologia 32: 287-291, 1992.