Photosynthetica, 2014 (vol. 52), issue 2

Photosynthetica 2014, 52(2):161-178 | DOI: 10.1007/s11099-014-0028-7

Global warming: causes and impacts on agroecosystems productivity and food security with emphasis on cassava comparative advantage in the tropics/subtropics

M. A. El-Sharkawy1,*
1 Centro Internacional de Agricultura Tropical (CIAT), Cali-Palmira, Colombia

Earth's climate has experienced notable changes during the past 50-70 years when global surface temperature has risen by 0.8°C during the 20th century. This was a consequence of the rise in the concentration of biogenic gases (carbon dioxide, methane, nitrous oxide, chlorofluorocarbons, and ozone) in the atmosphere that contribute, along with water vapor, to the so-called 'greenhouse effect'. Most of the emissions of greenhouse gases have been, and still are, the product of human activities, namely, the excessive use of fossil energy, deforestations in the humid tropics with associated poor land use-management, and wide-scale degradation of soils under crop cultivation and animal/pasture ecosystems. General Circulation Models predict that atmospheric CO2 concentration will probably reach 700 μmol(CO2) mol-1. This can result in rise of Earth's temperature from 1.5 to over 5°C by the end of this century. This may instigate 0.60-1.0 m rise in sea level, with impacts on coastal lowlands across continents. Crop modeling predicts significant changes in agricultural ecosystems. The mid- and high-latitude regions might reap the benefits of warming and CO2 fertilization effects via increasing total production and yield of C3 plants coupled with greater water-use efficiencies. The tropical/subtropical regions will probably suffer the worst impacts of global climate changes. These impacts include wide-scale socioeconomic changes, such as degradation and losses of natural resources, low agricultural production, and lower crop yields, increased risks of hunger, and above all waves of human migration and dislocation. Due to inherent cassava tolerance to heat, water stress, and poor soils, this crop is highly adaptable to warming climate. Such a trait should enhance its role in food security in the tropics and subtropics.

Keywords: agriculture; animal husbandry; carbon dioxide; climate change; crop; forest; greenhouse gas; modeling; photosynthesis; soil; temperature; water stress; wild Manihot species; yield

Published: June 1, 2014Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
El-Sharkawy, M.A. (2014). Global warming: causes and impacts on agroecosystems productivity and food security with emphasis on cassava comparative advantage in the tropics/subtropics. Photosynthetica52(2), 161-178. doi: 10.1007/s11099-014-0028-7.
Download citation

References

  1. Acock, B., Allen, L.H.: Crop responses to elevated carbon dioxide concentrations. - In: Strain B.R., Cure J.D. (ed.): Direct Effects of Increasing Carbon Dioxide on Vegetation. Pp 33-97. US Department of Energy, Washington 1985.
  2. Acock, B., Acock, M.C., Pasternak, D.: Interactions of CO2 enrichment and temperature on carbohydrate production and accumulation in muskmelon leaves. - J. Am. Soc. Hortic. Sci. 115: 525-529, 1990. Go to original source...
  3. Affholder, F., Tittonell, P., Corbeels, M. et al.: Ad hoc modeling in agronomy: what have we learned in the last 15 years? - Agron. J. 104: 735-748, 2012. Go to original source...
  4. Beaumont, L.J., Pitman, A., Perkins, S. et al.: Impacts of climate change on the world's most exceptional ecoregions. - P. Natl. Acad. Sci. USA 108: 2306-2311, 2011. Go to original source...
  5. Blanc, E.: The Impact of Climate Change on Crop Production in Sub-Saharan Africa - Ph.D. Thesis. University of Otago, Dunedin, New Zealand 2011.
  6. Blanc, E.: The impact of climate change on crop yields in Sub-Saharan Africa. - Am. J. Climate Change 1: 1-13, 2012. Go to original source...
  7. CIAT: Cassava Program Annual Report for 1987-1989. Pp 621. Centro Internacional de Agricultura Tropical, Cali 1993
  8. CIAT: Cassava Annual Report. Pp 292. Centro Internacional de Agricultura Tropical, Cali 1992.
  9. CIAT: January 2013 update on cassava model. Pp. 13. Centro Internacional de Agricultura Tropical, Cali 2013.
  10. Cock, J.H., El-Sharkawy, M.A.: Physiological characteristics for cassava selection. - Exp. Agr. 24: 443-448, 1988a. Go to original source...
  11. Cock, J.H., El-Sharkawy, M.A.: The physiological response of cassava to stress. - Proceedings of the 7th Symposium of the International Society of Tropical Root and Tuber Crops. Pp. 451-462. Institut National de la Recherche Agronomique (INRA), Paris. 1988b.
  12. Cock, J.H., Franklin, D., Sandoval, G., Juri, P.: Ideal cassava plant for maximum yield. - Crop Sci. 19: 271-279, 1979. Go to original source...
  13. Connor, D.J., Cock, J.H.: Response of cassava to water shortage. II. Canopy dynamics. - Field Crops. Res. 4: 285-296, 1981. Go to original source...
  14. Dale, V.H., Houghton, R.A., Grainger, A., Lugo, A.E., Brown, S.: Emissions of greenhouse gases from tropical deforestation and subsequent uses of the land. - In: Sustainable Agriculture and the Environment in the Humid Tropics. Pp. 215-260. National Academy Press, Washington D.C. 1993.
  15. Da Matta, F.M., Grandis, A., Arenque, B.C., Buckeridge, M.S.: Impacts of climate changes on crop physiology and food quality. - Food Res. Int. 43: 1814-1823, 2010.
  16. Dasgupta, S., Laplante, B., Murray, S., Wheeler, D.: Sea-Level Rise and Storm Surges. - Policy Research Working Paper 4901. The World Bank - Development Research Group - Environment and Energy Team, Washington 2009.
  17. Eamus, D.: The interaction of rising CO2 and temperatures with water use efficiency. - Plant Cell Environ. 14: 843-852, 1991. Go to original source...
  18. Easterling, W.E., Aggarwal, P.K., Batima, P. et al.: Food fibre and forest products. - In: Parry, M.L., Canziani, O.F., Paluitikof, J. P. et al. (ed.): Climate Change: 2007. Impacts, Adaptation and Vulnerability. Pp. 273-313. Cambridge University Press, Cambridge 2007.
  19. El-Shamy, M.E., Seierstad, I.A., Sorteberg, A.: Impacts of climate change on Blue Nile flows using bias-corrected GCM scenarios. - Hydrol. Earth Syst. Sci. 13: 551-565, 2009. Go to original source...
  20. El-Sharkawy, H., Rashed, H., Rached, I.: Climate Change: The Impacts of Sea Level Rise on Egypt. 45th ISOCARP Congress. Pp. 11. Porto 2009.
  21. El-Sharkawy, M.A.: Drought-tolerant cassava for Africa, Asia, and Latin America. - Bioscience 43: 441-451, 1993. Go to original source...
  22. El-Sharkawy, M.A.: Cassava biology and physiology. - Plant Mol. Biol. 56: 481-501, 2004. Go to original source...
  23. El-Sharkawy, M.A.: How can calibrated research-based models be improved for use as a tool in identifying genes controlling crop tolerance to environmental stresses in the era of genomics - from an experimentalist's perspective. - Photosynthetica 43: 161-176, 2005. Go to original source...
  24. El-Sharkawy, M.A.: International research on cassava photosynthesis, productivity, eco-physiology, and responses to environmental stresses in the tropics. - Photosynthetica 44: 481-512, 2006. Go to original source...
  25. El-Sharkawy, M.A.: Pioneering research on C4 photosynthesis: Implications for crop water relations and productivity in comparison to C3 cropping systems. - J. Food Agric. Environ. 7: 468-484, 2009.
  26. El-Sharkawy, M.A.: Cassava: physiological mechanisms and plant traits underlying tolerance to prolonged drought and their application for breeding improved cultivars in the seasonally dry and semiarid tropics. - In: DaMatta, F.M. (ed.): Ecophysiology of Tropical Tree Crops. Pp 71-110. Nova Science Publishers, New York 2010.
  27. El-Sharkawy, M.A.: Overview: Early history of crop growth and photosynthesis modeling. - BioSystems 103: 205-211, 2011. Go to original source...
  28. El-Sharkawy, M.A.: Stress-tolerant cassava: the role of integrative ecophysiology-breeding research in crop improvement. - Open J. Soil Sci. 2:162-186, 2012. Go to original source...
  29. El-Sharkawy, M.A., Cock, J.H.: C3-C4 intermediate photosynthetic characteristics of cassava (Manihot esculenta Crantz). I. Gas exchange. - Photosynth. Res. 12: 219-235, 1987. Go to original source...
  30. El-Sharkawy, M.A., de Tafur, S.M., Cadavid, L.F.: Potential photosynthesis of cassava as affected by growth conditions. - Crop Sci. 32: 1336-1342, 1992a. Go to original source...
  31. El-Sharkawy, M.A., de Tafur, S.M., Cadavid, L.F.: Photosynthesis of cassava and its relation to crop productivity. - Photosynthetica 28: 431-438, 1993.
  32. El-Sharkawy, M.A., de Tafur, S.M., Lopez, Y.: Cassava productivity, photosynthesis, ecophysiology, and response to environmental stresses in the tropics: a multidisciplinary approach to crop improvement and sustainable production. - In: Ospina, B., Ceballos, H. (ed.): Cassava in the Third Millenium: Modern Production, Processing, Use, and Marketing Systems. Pp. 29-88. CIAT, Cali, Colombia 2012a.
  33. El-Sharkawy, M.A., de Tafur, S.M, Lopez, Y.: Ecophysiological research for breeding improved cassava cultivars in favorable and stressful environments in the tropical/subtropical bio-systems. - Environ. Res. J. 6: 143-211, 2012b.
  34. El-Sharkawy, M.A., [ptde] Tafur, S.M., Lopez, Y.: Integrative ecophysiological research for breeding improved cassava cultivars in favorable and stressful environments in the tropical/subtropical bio-systems. - In: Gorawala, P., Mandhatri, S. (ed.): Agricultural Research Updates, Vol. 4. Pp 1-76. Nova Science Publishers, New York 2012c.
  35. El-Sharkawy, M.A., Hernandez, A.D., Hershey, C.: Yield stability of cassava during prolonged mid-season water stress. - Exp. Agr. 28: 165-174, 1992b. Go to original source...
  36. El-Sharkawy, M.A., Cock, J.H., Lynam, J.K., Hernández, A.D., Cadavid, L.F.: Relationships between biomass, root-yield and single-leaf photosynthesis in field-grown Cassava. - Field Crop Res. 25: 183-201, 1990. Go to original source...
  37. El-Sharkawy, M.A., Lopez, Y., Bernal, L.M.: Genotypic variations in activities of phosphoenolpyruvate carboxylase and correlations with leaf photosynthetic characteristics and crop productivity of cassava grown in low-land seasonally-dry tropics. - Photosynthetica 46: 238-247, 2008. Go to original source...
  38. Erbs, M., Manderscheid, R., Weigel, H.J.: A combined rain shelter and Free-Air CO2 Enrichment System to study climate change impacts on plants in the field. - Methods Ecol. Evol. 3: 81-88, 2012. Go to original source...
  39. Evans, J.R.: Photosynthesis and nitrogen relationships in leaves of C3 plants. - Oecologia 78: 9-19, 1989. Go to original source...
  40. FAO: Adaptation to climate change in agriculture, forestry and fisheries: perspective, framework and priorities. http://www.fao.org/nr/climpag/pub/adaptation to climate change2007.pdf, 2007.
  41. Fermont, A.M.: Cassava and Soil Fertility in Intensifying Smallholder Farming Systems of East Africa. - Ph.D. Thesis. Wageningen Agricultural University, Wageningen 2009.
  42. Fernandez, M.D., Tezara, W., Rengifo, E., Herrera, A.: Lack of downregulation of photosynthesis in a tropical root crop, cassava, grown under an elevated CO2 concentration. - Funct. Plant Biol. 29: 805-814, 2002. Go to original source...
  43. Fleisher, D. H., Barnaby, J., Sicher, R et al.: Effects of elevated CO2 and cyclic drought on potato under varying radiation regimes. - Agr. Forest Meteorol. 171-172: 270-280, 2013. Go to original source...
  44. Fleisher, D., Timlin, D., Reddy, et al.: Effects of CO2 and temperature on crops: lesson from SPAR growth chambers. - In: Hillel, D., Rosenzweig, C. (ed.): Handbook of Climate Change and Agroecosystems: Impacts, Adaptation, and Mitigation. Pp. 55-86. Imperial College Press, London 2011. Go to original source...
  45. Gabriel, L.F., Streck, N.A., Uhlmann, L.O., da Silva, M.R., da Silva, S.D.: [Climate change and its effects on cassava crop]. - Revista Brasileira de Engenharia Agrícola e Ambiental 18: 90-98, 2014. [In Portuguese] Go to original source...
  46. Girvetz, E.H., Zganjar, C., Raber, G.T. et al.: Applied climatechange analysis: the climate Wizard Tool. - PLoS ONE: doi:10.1371/journal.pone.0008320, 2009. Go to original source...
  47. Godwin, D., Ritchie, J.T., Singh, U., Hunt, L.A.: A User's Guide to CERES-Wheat-V2.10. 2nd. Edition. Pp 95. International Fertilizer Development Center, Muscle Shoals 1989.
  48. Godwin, D., Singh, U., Ritchie, J.T., Alocilja, E.C.A.: User 's Guide to CERES-Rice. Pp 131. International Fertilizer Development Center, Muscle Shoals 1993.
  49. Hershey, C.H., Alvarez, E., Aye, T.M. et al.: Eco-efficient interventions to support cassava's multiple roles in improving the lives of smallholders. - In: Hershey, C. H., Neate, P. (ed.): Eco-Efficiency: From Vision to Reality. Pp 135-160. Centro Internacional de Agricultura Tropical (CIAT), Cali 2012.
  50. Hertel, T.W., Lobell, D.B.: Agricultural Adaptation to Climate Change in Rich and Poor Countries: Current Modeling Practice and Potential for Empirical Contributioins. - GTAP Working Paper No.72, Purdue University, West Lafayette 2012.
  51. Hillel, D., Rosenzweig, C. (ed.).: Handbook of Climate Change and Agroecosystems: Impacts, Adaptation, and Mitigation. ICP Series on Climate Change Impacts, Adaptation, and Mitigation Vol.1. Pp 440. Imperial College Press, London 2011. Go to original source...
  52. Hirose, T., Werger, M.J.A.: Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy. - Oecologia 72: 520-526, 1987. Go to original source...
  53. Hoogenboom, G., Hunt, T., Jarvis, A. et al.: News Bulletin on the Cassava Modeling Group: Rethinking a Cassava Crop Model. Pp. 12. Centro Internacional de Agricultura Tropical (CIAT), Cali 2012.
  54. Houghton, J. T., Jenkins, G. J., Ephraums, J. J. (ed.).: Climatic Change: The IPCC Scientific Assessment. Pp. 364. Cambridge University Press, Cambridge 1990.
  55. Houghton, R. A.: Carbon. - In: Turner, B. L., Clark, W. C., Kates, R. W et al. (ed.).: The Earth as Transformed by Human Action. Pp 393-408. Cambridge University Press, Cambridge 1990.
  56. Howeler, R., Lutaladio, N., Thomas, G.: Save and Grow: Cassava: A Guide to Sustainable Production Intensification. Pp. 364. FAO, Rome, 2013.
  57. Hsiang, S. M., Burke, M., Miguel, E.: Quantifying the influence of climate on human conflict. - Science 341: doi: 10.1126/science.1235367, 2013 Go to original source...
  58. IBSNAT-International Benchmark Sites Network for Agrotechnology Transfer.: The IBSNAT decade. Pp178. Department of Agronomy and Soil Science, College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu 1993.
  59. Idso, K.E., Idso, S.B.: Plant responses to atmospheric CO2 enrichment in the face of environmental constraints: a review of the past 10 years' research. - Agr. Forest Meteorol. 69: 153-203, 1994. Go to original source...
  60. Idso, S.B., Kimball, B.A.: Effects of atmospheric CO2 enrichment on photosynthesis, respiration, and growth of sour orange trees. - Plant Physiol. 99: 341-343, 1992. Go to original source...
  61. Idso, S.B., Kimball, B.A.: CO2 enrichment of sour orange trees: 13 years and counting. - Environ. Exp. Bot. 46: 147-153, 2001. Go to original source...
  62. Irving, A.D., Connell, S.D., Russell, B.D.: Restoring coastal plants to improve global carbon storage: reaping what we sow. - PLoS ONE: doi:10.1371/journal.pone.0018311, 2011. Go to original source...
  63. Jaggard, K.W., Qi, A., Ober, E.S.: Possible changes to arable crop yields by 2050. - Philos. T. R. Soc. B. 365: 2835-2851, 2010. Go to original source...
  64. Jarvis, A., Ramirez-Villegas, J., Campo, B.V.H., Navarro-Racines, C.: Is cassava the answer to African climate change adaptation. - Tropical Plant Biol. 5: 9-29, 2012.
  65. Johnson, S.N., Riegler, M.: Root damage by insects reverses the effects of elevated atmospheric CO2 on eucalypt seedlings. - PLoS ONE: doi:10.1371/journal.pone.0079479, 2013. Go to original source...
  66. Jones, C. A., Kiniry, J. R.: CERES-Maize. A Simulation Model of Maize Growth and Development. Pp 194. Texas A&M University Press, College Station 1986.
  67. Jones, J.W., Boote, K.J., Hoogenboom, G., Jagtap, S.S., Wilkerson, G.G.: SOYGRO V5.42: Soybean Crop Growth Simulation Model. Users' Guide. Pp. 83. Department of Agricultural Engineering and Department of Agronomy, University of Florida, Gainesville 1989.
  68. Jones, P.D., Wigley, T.M.L.: Global warming trends. - Sci. Am. 263: 84-91, 1990. Go to original source...
  69. Jurik, T.W., Weber, J.A., Gates, D.M.: Short-term effects of CO2 on gas exchanges of leaves of bigtooth aspen (Populus grandidentata) in the field. - Plant Physiol. 75: 1022-1026, 1984. Go to original source...
  70. Kamukondiwa, W.: Alternative food crops to adapt to potential climatic change in southern Africa. - Clim. Res. 6: 153-155, 1996. Go to original source...
  71. Kerr, R.A.: Climate change: greenhouse forecasting still cloudy. - Science 276: 1040, 1997. Go to original source...
  72. Kimball, B.A.: Carbon dioxide and agricultural yield. an assemblage and analysis of 430 prior observations. - Agron. J. 75: 779-788, 1983. Go to original source...
  73. Kimball, B.A., Kobayashi, K., Bindi, M.: Responses of agricultural crops to free-air CO2 enrichment. - Adv. Agron. 77: 293-368, 2002. Go to original source...
  74. Kimball, B.A., White, J.W., Wall, G.W., Ottman, M.J.: Infrared-warmed and unwarmed wheat vegetation indices coalesce using canopy-temperature-based growing degree days. - Agron. J. 104: 114-118, 2012. Go to original source...
  75. Kirkham, M. B.: Elevated Carbon Dioxide: Impacts on Soil and Plant Water Relations. Pp. 399. CRC Press, Boca Raton, Florida 2011.
  76. Knox, J., Hess, T., Daccache, A., Wheeler, T.: Climate change impacts on crop productivity in Africa and South Asia. - Environ. Res. Lett.: doi:10.1088/1748-9326/7/3/034032, 2012. Go to original source...
  77. LEISA-ILEIA editorial team: Dealing with climate change. - LEISA Magazine 4: 4-5, 2008.
  78. Lin, W., Ziska, L.H., Namuco, O.S., Bai, K.: The interaction of high temperature and elevated CO2 on photosynthetic acclimation of single leaves of rice in situ. - Physiol. Plantarum 99: 178-184, 1997. Go to original source...
  79. Lobell, D.B., Bruke, M. (ed.): Climate Change and Food Security: Adapting Agriculture to a Warmer World. Pp. 199. Springer Dordrecht, Heidelberg, London, New York 2010.
  80. Lobell, D.B., Schlenker, W., Costa-Roberts, J.: Climate trends and global crop production since 1980. - Science 333: 208-218. 2011. Go to original source...
  81. Long, S.P., Ainsworth, E.A., Leakey, A.D.B., Nösberger, J., Ort, D.R.: Food for thought: lower-than-expected crop yield simulation with rising CO2 concentration. - Science 312: 1918-1921, 2006.
  82. Lynch, J.P., St.Clair, S.B.: Mineral stress: the missing link in understanding how global climate change will affect plants in real world soils. - Field Crop. Res. 90: 101-115, 2004. Go to original source...
  83. Mathews, R.B., Hunt, L.A.: GUMCAS: a model describing the growth of cassava (Manihot esculenta Crantz). - Field Crop. Res. 36: 69-84, 1994. Go to original source...
  84. Mascarelli, A. L.: A sleeping giant?. - Natur. Rep. Climate Change: doi:10.1038/climate.2009.24, 2009. Go to original source...
  85. McCright, A.M., Dunlap, R.E.: Defeating Kyoto: the conservative movement's impact on U.S. climate change policy. - Social Problems 50: 348-373, 2003. Go to original source...
  86. Metz, B., Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L.A. (ed.): IPCC: Fourth Assessment Report: Climate Change 2007 (AR4). Pp. 1075. Cambridge, UK and New York 2007.
  87. Mitchell, T.D., Jones, P.D.: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. - Int. J. Climatol. 25: 693-712, 2005. Go to original source...
  88. Morgan, J.A.: Growth and canopy carbon dioxide exchange rate of spring wheat as affected by nitrogen status. - Crop Sci. 28: 95-100, 1988. Go to original source...
  89. Nelson G.C., Rosegrant, M.W., Koo, J. et al.: Climate Change - Impact on Agriculture and Costs of Adaptation. - Food Policy Report, Parry, M. L. et al. (ed.): International Food Policy Research Institute. Pp. 30. Washington, DC 2009.
  90. Nord, E.A., Lynch, J.P.: Plant phenology: a critical controller of soil resource acquisition. - J. Exp. Bot. 60, 1927-1937, 2009. Go to original source...
  91. Olson, D.M., Dinerstein, E.: The Global 200: priority ecoregions for global conservation. - Ann. Mo. Bot. Gard. 89: 199-224, 2002. Go to original source...
  92. Parry, M.L.: The implications of climate change for crop yields, global food supply and risk of hunger. - SAT eJournal 4: 1-44, 2007.
  93. Parry, M.L., Rosenzweig, C., Iglesias, A., Livermore, M., Fischer, G.: Effects of climate change on global food production under SRES emissions and socioeconomic scenarios. - Global Environ.Change 14: 53-67, 2004. Go to original source...
  94. Paul, K., Yeoh, H.H.: K m values of ribulose-1,5-bisphosphate carboxylase of cassava cultivars. - Phytochemistry 26: 1965-1967, 1987.
  95. Paul, K., Yeoh, H.H.: Characteristics of ribulose 1,5-bisphosphate carboxylase from cassava leaves. - Plant Physiol. Bioch. 26: 615-618, 1988.
  96. Pellet, D., El-Sharkawy, M.A.: Cassava varietal response to phosphorus fertilization. I. Yield, biomass and gas exchange. - Field Crop. Res. 35: 1-11, 1993a Go to original source...
  97. Pellet, D., El-Sharkawy, M.A.: Cassava varietal response to phosphorus fertilization. II. Phosphorus uptake and use efficiency. - Field Crop. Res. 35: 13-20, 1993b. Go to original source...
  98. Pellet, D., El-Sharkawy, M.A.: Sink-source relations in cassava: effects of reciprocal grafting on yield and leaf photosynthesis. - Exp. Agr. 30: 359-367, 1994. Go to original source...
  99. Pellet, D., El-Sharkawy, M.A.: Cassava varietal response to fertilization: growth dynamics and implications for cropping sustainability. - Exp. Agr. 33: 353-365, 1997. Go to original source...
  100. Perrow, C.: Why we disagree about climate change: understanding controversy, inaction, and opportunity. - Contemp. Sociol. 39: 46-47, 2010. Go to original source...
  101. Porto, M.C.M., El-Sharkawy, M.A., Cock, J.H., Hernandez, A.D.P., de Cadena, G.: [Growth, photosynthesis and nitrogen use efficiency in maize, beans and cassava subjected to two levels of nitrogen in soil]. - Revista Brasileira de Mandioca 6: 35-47, 1987 [In Portuguese]
  102. Powlson, D.S., Whitmore, A.P., Goulding, K.W.T.: Soil carbon sequestration to mitigate climate change: a critical reexamination to identify the true and the false. - Eur. J. Soil Sci. 62: 42-55, 2011. Go to original source...
  103. Reddy, K.R, Zhao, D.: Interactive effects of elevated CO2 and potassium deficiency on photosynthesis, growth, and biomass partitioning of cotton. - Field Crop. Res. 94: 201-213, 2005. Go to original source...
  104. Ritchie, J.T., Otter, S.: Description and performance of CERES-Wheat: A user-oriented wheat yield model. - In: Willis, W. O. (ed.). ARS Wheat Yield Project. Pp 159-175. Department of Agriculture, Agricultural Research Service ARS-38. Washington DC 1985.
  105. Ritchie, J. T., Singh, U., Godwin, D., Hunt, L.: A User's Guide to CERES-Maize V2.10. Pp. 194. International Fertilizer Development Center, Muscle Shoals 1989.
  106. Rivera, P.C., Khan, T.M.A.: Discovery of the major mechanism of global warming and climate change. - J. Basic Appl. Sci. 8: 59-73, 2012 Go to original source...
  107. Roaf, S., Crichton, D., Nicol, F.: Adapting Buildings and Cities for Climate Change, 21st Century Survival Guide. Pp. 385. Elsevier, London 2005.
  108. Rosenthal, D.M., Ort, D.R.: Examining cassava's potential to enhance food security under climate change. - Trop. Plant Biol. 5: 30-38, 2012. Go to original source...
  109. Rosenthal, D.M., Slattery, R.A., Miller, R.E et al.: Cassava about-FACE: Greater than expected yield stimulation of cassava (Manihot esculenta) by future CO2 levels. - Global Change Biol. 18: 2661-2675, 2012 Go to original source...
  110. Rosenzweig, C., Hillel, D.: Potential impacts of climate change on agriculture and food supply. - Consequences 1: http://www.gcrio.org/consequences/summer95/agriculture.html, 1995
  111. Rosenzweig, C., Iglesias, A.: The use of crop models for international climate change impact assessment: study design, methodology, and conclusions. - In: Rosenzweig, C., Iglesias, A. (ed.): Implications of Climate Change for International Agriculture: Crop Modeling Study. Pp. 1-44. US Environmental Protection Agency, Washington DC., 1994.
  112. Rosenzweig, C., Parry, M. L., Fischer, G, Frohberg, K.: Climate Change and World Food Supply. Research Report No. 3. Environmental Change Unit, University of Oxford, Oxford 1993.
  113. Saithong, T., Rongsirikul, O., Kalapanulak, S. et al.: Starch biosynthesis in cassava: a genome-based pathway reconstruction and its exploitation in data integration. - BMC Systems Biology 7: 75, 2013. Go to original source...
  114. Sangpenchan, R.: Climate change impacts on cassava production in Northeastern Thailand. - MSc Thesis, The Pennsylvania State University, University Park 2009.
  115. Sasson, A.: Feeding tomorrow's world. Pp. 805. UNESCO/CTA, Paris 1990.
  116. Schmidhuber, J., Tubiello, F.N.: Global food security under climate change. - P. Natl. Acad. Sci. USA 104: 19703-19708, 2007. Go to original source...
  117. Shimono, H., Okada, M., Inoue, M. et al.: Diurnal and seasonal variations in stomatal conductance of rice at elevated atmospheric CO2 under fully open-air conditions. - Plant Cell Environ. 33: 322-331, 2010. Go to original source...
  118. Singh, S.K., Badgujar, G., Reddy, V.R., Fleisher, D.H., Bunce, J.A.: Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton. - J. Plant Physiol. 170: 801-813, 2013 Go to original source...
  119. Soon, W., Baliunas, S.: Proxy climatic and environmental changes of the past 1000 years. - Climate Res. 23: 89-110, 2003. Go to original source...
  120. St.Clair, S.B., Lynch, J.P.: The opening of Pandora's Box: climate change impacts on soil fertility and crop nutrition in developing countries. - Plant Soil. 335: 101-115, 2010. Go to original source...
  121. Tissue, D.T., Thomas, R.B., Strain, B.R.: Atmospheric CO2 enrichment increases growth and photosynthesis of Pinus taeda: a 4-year experiment in the field. - Plant Cell Environ. 20: 1123-1134, 1997. Go to original source...
  122. Tubiello, F.N., Soussana, J.F., Howden, S.M.: Crop and pasture response to climate Change. - P. Natl. Acad. Sci. USA 104: 19686-19690. 2007. Go to original source...
  123. van Keulen, H., Van Laar, H.H., Rabbinge, R. (ed.): 40 Years Theory and Model at Wageningen UR. Pp 57. Wageningen University and Research Centre, Wageningen, 2008.
  124. van Wart, J., Grassini, P., Cassman, K.G.: Impact of derived weather data on simulated crop yields. - Global Change Biol. 19: 3822-3834, 2013. Go to original source...
  125. Veltkamp, H.J.: Physiological causes of yield variation in cassava (Manihot esculenta Crantz). - PhD. Thesis, Wageningen Agricultural University, Wageningen 1986.
  126. Wall, G.W, Kimball, B.A., White, J.W., Ottman, M.J.: Gas exchange and water relations of spring wheat under fullseason infrared warming. - Global Change Biol. 17: 2113-2133, 2011. Go to original source...
  127. Walter, K.M., Zimov, S.A., Chanton, J.P., Verbyla, D., Chapin, F.S.: Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. - Nature 443: 71-75, 2006. Go to original source...
  128. Wardlaw, I. F.: Translocation and source-sink relationships. - In: Carlson, P. S. (ed.): The Biology of Crop Productivity. Pp. 297-339. Academic Press, New York 1980. Go to original source...
  129. White, J.W., Hoogenboom, G., Kimball, B.A., Wall, G.W.: Methodologies for simulating impacts of climate change on crop production. - Field Crop. Res. 124: 357-368, 2011a. Go to original source...
  130. White, J.W., Kimball, B.A., Wall, G.W., Ottman, M.J., Hunt, L.A.: Responses of time of anthesis and maturity to sowing dates and infrared warming in spring wheat. - Field Crop. Res. 124: 213-222, 2011b. Go to original source...
  131. Ziska, L.H., Bunce, J.A.: Influence of increasing carbon dioxide concentration on photosynthetic and growth stimulation of selected C4 crops and weeds. - Photosynth. Res. 54: 199-208, 1997. Go to original source...
  132. Ziska, L.H., Hogan, K.P., Smith, A.P., Drake, B.G.: Growth and photosynthesis response of nine tropical species with longterm exposure to elevated carbon dioxide. - Oecologia 86: 383-389, 1991. Go to original source...
  133. Ziska, L.H., Sicher, R.C., Bunce, J.A.: The impact of elevated carbon dioxide on the growth and gas exchange of three C4 species differing in CO2 leak rates. - Physiol. Plantarum 105: 74-80, 1999. Go to original source...