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Abstract. Sufficient conditions for the existence of solutions to boundary value problems
with a Carathéodory right hand side for ordinary differential systems are established by
means of continuous approximations.
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1. INTRODUCTION

In this paper we prove theorems on the existence of solutions to the differential
system

(1.1) e ® = ft,x, 2. 2FY)
satisfying the boundary condition
(12) V(z) =o,

where V is a continuous operator of boundary conditions and o is a zero point of the
kn times

——~
space R*" o = (0,0,...,0).

We generalize the results of [2] where the second-order differential systems with
Le°-Carathéodory right-hand sides are considered. Here we consider the k-th order
differential system (1.1) with a Carathéodory function f. The problem (1.1), (1.2)
is approximated by a sequence of problems with continuous right-hand sides. The
existence of solutions of (1.1), (1.2) is obtained as a consequence of the existence of
solutions of these auxiliary problems.
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Let —co < a* < a<b<bd* <oo, ] =]ab], I*=][a*b"], R=(—00,00), n,k
natural numbers. R" denotes the Euclidean n-space as usual and ||z|| denotes the
Euclidean norm. C¥(I) = C*([a, b], R") is the Banach space of functions u such that
u®) is continuous on I with the norm

e = max {Jlull, /[l "1, ™},

where
Jull = max{[lu(t)]], t € I}.

Let C,,(I) denote the space C2(I). C2%(R) = C% (R, R™) is the space of functions
¢ such that for each I € {1,2,...} there exists a continuous on R function ¢ and

the support of the function ¢ is a bounded closed set, supp ¢ = {z € R; ||¢(x)| > 0}.
Finally, let 1 < p < oo, let L2(I) = L2((a,b), R™) be as usual the space of Lebesgue
integrable functions with the norm

= ([ b Jutol ar) g

let us denote LP(I) = LY(I), L(I) = L*(1).

Definition 1.1. A function f: I* x RF®» — R" is a Carathéodory function
provided

(i) the map y — f(¢,y) is continuous for almost every ¢t € I'*,
(ii) the map t +— f(¢,y) is measurable for all y € RE”?
(iii) for each bounded subset B C R¥™ we have

1p(t) = sup{[|f(t,y)ll, y € B} € L(I").

Throughout the paper let us assume f: I* x RF” — R™ is a Carathéodory function
and V: C*¥~1(I) — RF" is a continuous operator.

If f is continuous, by a solution on I to the equation (1.1) we mean a classical
solution with a continuous k-th derivative, while if f is a Carathéodory function,
a solution will mean a function x which has an absolutely continuous (k — 1)-st
derivative such that x fulfils the equality z(®) (t) = f(t, x(t),2'(t),...,z*=1(t)) for
almost every t € I.

By xy where x,y € R* we mean a scalar product of two vectors from R".
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2. REGULARIZATION OPERATOR

Let ¢ in CTg be such that
1
o) =20 VteR, suppp=][-1,1], / p(t)dt = 1.

—1

For an example of such a function see [4], page 26.
Instead of problem (1.1), (1.2) we will consider the equation

(2.1,) e ® = f(tx, 2. xFY)

with the boundary condition (1.2), where ¢ is a positive real number and Yy € R*"
we have

felt,y) = é/ab w(t_n)f(n,y)dn

3

or equivalently

1 p—
f=(t,y) =/71f(t—€n7y)<p(77) dn,

fty) tela”b7]
0 t¢fa b
The following theorem is proved in [3] (a simple form for n=1 is presented):

where f(t,y) =

Theorem 2.1. Let u € LP(I*), where 1 < p < oo, and for € > 0 let us denote

b* _ 1
(R = = [ o2 )utman = [ e — et dn
u(t) tela*, b

where u(t) = { 0 téla ]

Then
(i) Reu € C*°(R) fore >0,

(ii) 51—1>I(I)l+ |Reu — ulp = 0.
Lemma 2.1. Let B be a bounded subset in R¥". Then the function f.(t,y) is

continuous on I* x B for every € > 0.

Proof. Continuity of f. follows from the theorem on continuous dependence of
the integral on a parameter. O
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Definition 2.1.  Let w: I* x [0,00) — [0, 00) be a Carathéodory function. We
write w € M(I* x [0,00);[0,00)) if w satisfies:
(i) For almost every t € I* and for every dy,ds € [0,00), d1 < dz we have

w(t, dl) < w(t, dg)

(ii) For almost every ¢t € I* we have w(t,0) = 0.

Definition 2.2.  Let B be a compact subset of R** 7 € R, § € [0,00) and
€ > 0. Let us denote by w(r,d) the function

W(T,(s):maX{”T(T7$17...7.’Ek)—f(T,y]_,...7yk)H;
(xla"'vxk)7 (yla"'vyk)€B7 vaz—yzH g(sv 22177k}

and by w¢(7,0) the function

we(7,6) = %/b (=) w(mn,8)d

or equivalently

1
we (T, 6) =/ w(T —en, 8)p(n) dn.

-1

Lemma 2.2. Let B be a compact subset of RF™. Then for every ¢ > 0
(i) w,we € M(I* x [0,00);[0,00));
(ii) Eli%l+ fe(t,y) = f(t,y) and EEI&ws(t,é) = w(t,d) forally € B, 6 > 0 and
for almost every t € I*;
(iii) for every (z1,...,2k), (y1,...,yx) € B and for almost every t € I* we have

HfE(t7$l7~~~7xk) - fs(taylw"?yk) - f(t7xla~~~vxk:) +f(t7yl77yk)||
S we(t, max{||x; —yill; i =1,2,...,k}) + w(t,max{||lz; —will; i =1,2,...,k});

t

(iv) hr&r (fe(r,2) = f(1,2)) dT = 0 uniformly on I x B.

Proof.

(i) Since f(r,.) is a Carathéodory function and B is a compact set, for almost
every 7 € I* we have 0 < w(7,d) < 2{4(7), w(7,.) is nondecreasing and continuous,
w(.,d) is measurable and

lim w(r,d) =0.
d—0+
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It means that w(7,0) = 0 for almost every 7 € I*. Therefore we can see that
w € M(I* x [0,00); [0, 00)).

By the theorem on continuous dependence of the integral on a parameter, w, is a
continuous function for arbitrary € > 0 . Therefore w. is a Carathéodory function
such that w.(7,0) = 0 for almost every 7 € I*. If §; < d2, then for almost every
Tel*

(22) 0 < w(T, 51) < w(T, (52)

hence for almost every n € I*

o | =

0< ég@(T —eo(n, 1) <

: (=)ot

and therefore
(2.3) 0 < we(7,01) < we(T,d2).

It means that w. € M(I* x [0, 00); [0, 00)).
(ii) This statement is a consequence of Theorem 2.1 which asserts that our as-
sumption implies for every 6 > 0,y € Bandi=1,2,...,n

1

li <(7,0) — ,0)|dT =0,
Jim [ o (r.0) —w(r. )] r

1

hI(I)l |f€i(Tay)_fi(Tay)|dT:O,
e—0+ 1

where f;, fo; are the i-th components of the functions f, f., respectively.
(iii) Obviously for ||z; —yil| <6, i=1,...,k
||f5(t,$1,. .. 7$k) - fs(t’ylr . 7yk)H

/1 o) (ft —en,my,...,an) — ft —enyr, .- ux) dnH

-1

1
< / [ f(t —en w1, on) — f(E—enyn, - yw)lle(n) dn
1

1
<f ot = e )p(n) dn = (1. 9).

Now it is easy to see that the statement (iii) of the above lemma holds.
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(iv) We will prove that for every (¢,x) € I x B, x = (21,...,2k), and every e > 0
there exist €9 > 0 and a neighbourhood Oy, , of (t,) in the set I x B such that for
every 0 < ¢ < gg and for every (t',y) € O(t.z), ¥ = (Y1, -, Uk)s

<e.

|/ " ) = Fry)) dr

By (ii) and by the Lebesgue dominated convergence theorem there exists 1 > 0
such that for every 0 < ¢ < &1

b
[ 1) = sroldr < 5.

Since w € M (I* x [0,00); [0, 00)) there exists such a ¢ > 0 that

b
/ w(r,d)dr < §.

By (ii) and the Lebesgue dominated convergence theorem there exists 2 > 0 such
that for every 0 < € < &3

b
/ we(r,6)dr < §.

Let us denote O o) = {(t',y) € I x B;||lz; —yil| < 9,7 =1,2,...,k} and g9 =
min{e,e2}. Now for every 0 < e < g9 and for every (t',y) € O(; ) we have

H /:’ (fe(ry) = f(r9)) dr

< H / ' (7m0~ str)) ar

/ (felrz) — folry) — f(r.2) + f(r.9)) dr

+

b

b
</ ||f€(7',x)—f(7',x)||d7'+/ w. (7, 8) + w(r, 8) dr

a

€ e e
<gtztise

This means that the system of the sets {O( .} t.2) covers the compact set

€IxB
I x B and therefore there exists a finite subsystem which covers the set I x B and

therefore the statement of (iv) holds. O

342



Lemma 2.3. Let B C R* be a compact set. Let € be a set of ¢ > 0 such that
the system of functions {.}.ce¢, x.: I — B, is equi-continuous and 0 € €.

t
Then liI(I)1+/ fe(r,2e(1)) = f(7,22(7)) d7 = 0 uniformly on L
E— a

Proof. This proof is a modification of the proof of Lemma 3.1 in [6].
For € € € let us denote

a. = sup{H /: fe(roy) = f(r,y)dr

;a<3<t<b,y€B},

b =max{] [ (7)) — S aa(r) dr

By (iv) of Lemma 2.2

;agtgb}.

lim a. = 0.
e—0

We want to prove

timy 5. =0

Let e > 0 be an arbitrary real number. Then by (i) of Lemma 2.2 there exists
such a ¢ > 0 that

b
/ w(r,d)dr < g,

and by (i), (ii) of Lemma 2.2 such an &1 > 0 that for every € € €, ¢ < £; we have

b
/ we(r,6)dr < 2.
a
Since {z:}ece, e = (Ze1, - . ., Te) 1S equi-continuous there exists dg > 0 such that
|wei(t) —zei(T)|| < for t,7€l, i=1,....k, |[t—7| <do, € € E.

Let [ be such an integer that [ < bé_—o" < I+ 1. Let us denote t; = a + jdp and
T=(t) = z(t;) for t; <t < tj41, where j =0,1,...,l. Then

e (t) — T (B)]] < 0

fortel,i=1,...,kand € € € and

<+ 1Dae

H /at fe(7,72(7) = f(r,72(r) dr

fora<t<bande <eg,e€ €.
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Therefore by (iii) of Lemma 2.2 we obtain

H /at (fe(r,ae(r)) = f(r2=(7))) dr

< / Vfolr2e(r)) — f(rs2e(r)) — folm T2(r)) + f(r, F2(r)) | dr

+ ‘ / t(fs(n@(r)) — f(r7(r)) dr

< /b(wE(T, §)+w(r,d))dr+ (1 +1a: <e+ (I+1)ae

fortel,e<e,eeé.
Therefore 8: < e+ (I+1)a. for e < g1, € € €. Since liH(l) ae = 0 and e is arbitrary
E—
we conclude that lin% Be = 0. O
e—

Theorem 2.2. Let f: I* x R*™ — R be a Carathéodory function. Denote by &
the set of positive € such that for each € € € there exists a solution x.: I C I* — R"
to the problem (2.1.), (1.2). Suppose that 0 € € and that there exists a compact sub-
set B C RF" independent of ¢ such that (z.(t),z.(t),... ,xék_l)(t)) € B is satisfied
for each € € € and for each t € I.

Then there exist a sequence {€:}52, and a solution z: I — R" to the given

boundary value problem (1.1), (1.2) such that e5 € € for all s € N, lim ¢, = 0,

§—00

(z(t),z'(t),...,2*"D(t)) € B forallt € I, lim xg? (t) = 2 (t) uniformly on I for
anyi=1,2,...,k—1, and lim xék)(t) =z (t) on I.

Proof. First let us prove that the set {z.}.c¢ is relatively compact in C¥~1(I).
Really, for the assumptions of the Arzela-Ascoli theorem to be satisfied, it is necessary

to prove equi-continuity of the set {xékfl)}seg.

Let e > 0 be an arbitrary real number, suppose t1,t2 € I and compute
to
a0 0) — )l = | [ a0t
t
to '
— ‘ felt, ze(t), 2L (), . .. ,xgk—”(t))dtH
t

12 )
:‘ t / f(t—€n7xa(t)7fv’s(t),~..,x§’“”(t))@(n)dndtH
t1 —1

/tt /_11 l(t = en)p(n) dn dt’,

N
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lf( ) tel* .
where [7(t) = 0 ¢l . Now for ¢ close to 0 (¢ < €1, where £; is defined
t *

below) we have

'/ / It )dndt‘
‘ dt’ ‘ (/ (1 — en)p(n) diy — zf(t)) dt’.

Since If(t) € L(I*) then f ly(T)dr is a continuous function, every continuous
function on a compact interval is umformly continuous on that interval, and therefore
there exists 61 > 0 such that for all |t; — ta]| < 1 we have

[

By Theorem 2.1 there exists 1 such that for each € € €, 0 < € < ¢,

/lft—en n)dn — lf(t)‘dt<§,

and therefore for Ve € &, 0 < ¢ < 1, we have

'//lft—sn )dndt‘<e

Now for € € €, 1 < ¢,

‘/t/ 13(t —en)ep )dndt’

Let ® = max{¢(t),t € I}. Then

/lf )dndt‘
1 b
/ zf<n><1>dndtj<a|t1—tm [ utman
t1 a a

Let 9 = —%1—— then for |t; — t2| < d» we obtain
dn

@[yl (m)
'/ / le(t —en)e )dndt‘<e

tg/ 1r(n )d dt’

X
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Let § = min{d1, 2} then for |t; — t2| < § we have
2D (1) — 2l ()] <e.

This means that the set {z.}.ce is relatively compact in C¥~1(I). Therefore
there exist a sequence {e;}, e; € €, ¢, — 0 and a function z: I — R™ such that
(z(t), ' (t),...,2*=D(t)) € B,Vt € I, ., — x in C*(I).

Now, since z., is the solution to the equation (2.1.) for ¢ = &,, we have

¢
(2.4) xg:_l)(t) = xé’j_l)(a) + / feo (T xe (7), 2L (7),... ,ng—l)(T)) dr, Vt e I.

Using Lemma 2.3 we get

25D () = 2D (a) + / FE (). e (), ... a® D () dr,

which means that z is a solution to the equation (1.1).
Since x., uniformly converges to z in C*¥~1(I), V is a continuous operator V :
C*=1(I) — R*" and z., is a solution to the problem (2.1.,), (1.2), we can see that

V(‘rﬁs) = 07
and therefore for ¢, — 0 we have
V(z) =o.
It means that z is a solution to the problem (1.1), (1.2). O

Remark 2.1. When l¢(t) € LP(I*) in Definition 1.1, where 1 < p < oo (in this
case we speak about an LP-Carathéodory function) we can prove that the convergence

of xék) to (*) is in the norm of LP(I*). To prove it we need only to assume in
Definition 2.2

w(r,d) = maX{HT(T,xl, conxr) — f(r oy, ,yk)||p}.
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3. AN APPLICATION
As an example how to use Theorem 2.2 we may consider the equation
(3.1) 2" = f(t,z,z)
with the four point boundary conditions
(3.2) z(0) = z(c), x(d) = z(1),
where 0 < ¢ < d < 1. In [1] the following result is proved.

Theorem 3.1. Let f: [0,1] x R?® — R" be a continuous function and let us
consider the problem (3.1), (3.2). Assume
(i) there is a constant M > 0 such that uf(t,u,p) > 0 for Vt € [0,1], Yu € R",
|lu|| > M and Vp € R™, pu =0,
(ii) there exist continuous positive functions A;, Bj, j € {1,2,...,n},

Aj: [0,1] x R R, Bj: [0,1] x R*™~1 R
such that
|fj(t’u7p)| < Aj(t7uap17p27 e 7pj—1)p? + Bj(t’u7p17p27 e apj—1)7

where f = (f1, fo,.--, fn), v € R", p € R", p = (p1,p2,...,pn) and for j = 1,
A, and B; are independent of p functions.
Then the problem (3.1), (3.2) has a solution.

Remark 3.1. From the proof of this theorem and from the topological transver-
sality theorem in [4] it follows that the solution to the problem (3.1), (3.2) is bounded
in C}([0,1]) by a constant 9 which depends only on M, A;, B;.

Now we can extend the results of Theorem 3.1 to the Carathéodory case similarly
to [2]. We allow discontinuities of functions A;, B; in contrast to [2].

Definition 3.1. Let k, I be natural numbers. A function f: I x R¥ — R! is
an L°°-Carathéodory function provided f = f(¢,u) satisfies

(i) the map u +— f(¢, u) is continuous for almost every ¢ € I,
(ii) the map t +— f(t,u) is measurable for all (u,p) € R¥,
(iii) for each bounded subset B C R¥,

1p(t) = sup{[|lf(t, u)|l,u € B} € L=(I),
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where L° is the space of Lebesgue integrable functions with the norm
[flloc = esssup [ f]].
tel

Theorem 3.2. Let f: [0,1] x R*™ — R" be a Carathéodory function and let us
consider the problem (3.1), (3.2). Assume
(i) there is a constant M > 0 such that uf(t,u,p) > 0 for almost every t in [0, 1],
Yu € R, ||ul]| > M and Vp € R, pu =0,
(ii) there exist positive L>°-Carathéodory functions Aj, Bj, where the index j is
from {1,2,...,n},

Aj: [0,1] x R™E S R Bj: [0,1] x R™™~1 S R,
such that for almost every t € [0, 1]
|f5(t,u, p)| < Aj(t,u,p1,p2, - - pi—1)P; + Bi(t,u,p1,p2, .., pj-1),
where f = (f1, fo,.--, fn), v € R*, p € R", p = (p1,p2,...,pn) and for j = 1,

Ay and B; are independent of p functions.
Then the problem (3.1), (3.2) has a solution.

Proof. Let f. be an approximated function as in Section 2, where a = a* = 0,
b=0b* =1 and k = 2, that is

felt,u,p)u = %/OlsO(t_n)f(n,u?p)dn,

€

andlet V: CL([0,1]) — R?" be a continuous operator of boundary conditions V (z) =
(2(0) — x(a), z(b) — (1)) . Then
1) for Ve € (0,1), for V¢ € [0,1], Vu € R™, ||u|]| > M and Vp € R", pu = 0 we have

fe(t,u, p)u = (é /01s0<t;n)f(n,u,p)dn>u =

= é/olsO(t_n)(f(n,u?p)U) dn >0

by the assumption (i) of this theorem.
2) Let j€{1,2,...,n},ue R", pe R", p=(p1,02,---,Pn),

Aj(uaplaPQa s 7pj—1) = eSS[Su%ﬁ) {AJ (tau7p1ap2a s apj—l)}
tel0,1
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and

Bj(u7p17p27 v 7pj71) = esssup {Bj(tvu7p17p2a .o 7pj71)}~
te(0,1]
Since A, B; are L>°-Carathéodory functions, A;, B; are obviously continuous.
Now we have

1

1 R R
| fe, (t,u, p)| = /_1fj(t—€n7u,p)so(n)dn‘ </1|fj(t—€n7u,p)l<p(n)d77

1
g / (Aj(u7p17p27 e apj—l)p? + Bj(u7p17p27 e 7pj—1))g0(77) d77
—1

1 1
< / Ay (s prpe - py2)P(n) dn + / B;(w,prp. - py—1)0(m) A
—1 —1
:Aj(uaphpQ)"')pj—l)p?+Bj(u?plap2a"'7pj—l)~

By Theorem 3.1 and Remark 3.1, for any € > 0 there exists a solution z. to the
approximated problem

(3.1,) 2 = f.(t,z,2)

where z satisfies boundary conditions (3.2) such that ||z.||; < 9.
Now all assumptions of Theorem 2.1 are fullfiled and therefore there exists a
solution to the problem (1.1), (3.1). O
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