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Prologue - Lax equivalence principle

Peter D. Lax

Formulation for LINEAR problems

• Stability - uniform bounds of approximate solutions

• Consistency - vanishing approximation error

=⇒

• Convergence - approximate solutions converge to
exact solution



Euler system of gas dynamics

Leonhard Paul
Euler
1707–1783

Equation of continuity – Mass conservation

∂t%+ divxm = 0, m = %u

Momentum equation – Newton’s second law

∂tm + divx

(
m⊗m

%

)
+∇xp(%) = 0, p(%) = a%γ

Impermeability and/or periodic boundary condition

u · n|∂Ω = 0, Ω ⊂ Rd , or Ω = Td

Initial state

%(0, ·) = %0, m(0, ·) = m0



Classical solutions

Local existence. Classical solutions exist locally in time as
long as the initial data are regular and the initial density
strictly positive

Finite time blow–up. Classical solutions develop
singularity (become discontinuous) in a finite time for a
fairly generic class of initial data



Mythology concerning Euler equations in several dimensions

Existence. The long time existence of (possibly weak) solutions is not
known

Uniqueness. The is no (known) selection criterion to identify a unique
solution (semiflow)

Computation. Oscillatory solutions cannot be visualized by numerical
simulation (weak convergence)
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Weak (distributional) solutions

Jacques
Hadamard
1865–1963

Laurent
Schwartz
1915–2002

Mass conservation

∫
B

[
%(t2, ·)− %(t1, ·)

]
dx = −

∫ t2

t1

∫
∂B

%u · n dSxdt[∫
Ω

%ϕ dx

]t=τ

t=0

=

∫ τ

0

∫
Ω

[
%∂tϕ+ m · ∇xϕ

]
dxdt, m ≡ %u

Momentum balance

∫
B

[
m(t2, ·)−m(t1, ·)

]
dx

= −
∫ t2

t1

∫
∂B

[
m⊗ u · n + p(%)n

]
dSx dt

[∫
Ω

m ·ϕ dx

]t=τ

t=0

=

∫ τ

0

∫
Ω

[
m · ∂tϕ +

m⊗m

%
: ∇xϕ + p(%)divxϕ

]
dxdt



Time irreversibility – energy dissipation
Energy

E =
1

2

|m|2

%
+ P(%), P ′(%)%− P(%) = p(%)

p′ ≥ 0⇒ [%,m] 7→


1
2
|m|2
%

+ P(%) if % > 0

P(%) if |m| = 0, % ≥ 0
∞ otherwise

is convex l.s.c

Energy balance (conservation)

∂tE + divx

(
Em

%

)
+ divx

(
p

m

%

)
= 0

Energy dissipation

∂tE + divx

(
Em

%

)
+ divx

(
p

m

%

)
≤ 0

E =

∫
Ω

E dx , ∂tE ≤ 0, E(0+) =

∫
Ω

[
1

2

|m0|2

%0
+ P(%0)

]
dx

Rudolf
Clausius
1822–1888



Wild solutions?

Charles Hermite [1822-1901]

In a letter to Stieltjes

I turn with terror and horror from this lamentable
scourge of continuous functions with no derivatives

Known facts concerning global solvability

Existence of infinitely many weak solution for any continuous initial
data (Chiodaroli, DeLellis–Széhelyhidi, EF...)

Existence of “many” initial data that give rise to infinitely many
weak solutions satisfying the energy inequality (Chiodaroli, EF, Luo,
Xie, Xin...)

Existence of smooth initial data that ultimately give rise to infinitely
many weak solutions satisfying the energy inequality (Kreml et al)

Weak–strong uniqueness in the class of admissible weak solutions
(Dafermos)



Ill posedness

Anna
Abbatiello
(TU Berlin)

Theorem [A.Abbatiello, EF 2019]

Let d = 2, 3. Let %0, m0 be given such that

%0 ∈ R, 0 ≤ % ≤ %0 ≤ %,

m0 ∈ R, divxm0 ∈ R, m0 · n|∂Ω = 0.

Let {τi}∞i=1 ⊂ (0,T ) be an arbitrary (countable dense) set of
times.
Then the Euler problem admits infinitely many weak solutions
%, m with a strictly decreasing total energy profile such that

% ∈ Cweak([0,T ]; Lγ(Ω)), m ∈ Cweak([0,T ]; L
2γ
γ+1 (Ω;Rd))

but

t 7→ [%(t, ·),m(t, ·)] is not strongly continuous at any τi



FV numerical scheme

(%0
h, u

0
h) = (ΠT %0,ΠT u0)

Dt%
k
K +

∑
σ∈E(K)

|σ|
|K |Fh(%kh , u

k
h) = 0

Dt(%
k
huk

h)K +
∑

σ∈E(K)

|σ|
|K |

(
Fh(%khuk

h , u
k
h) + p(ρkh)n− hβ

[[
uk
h

]])
= 0.

Discrete time derivative

Dtr
k
K =

r kK − r k−1
K

∆t

Upwind, fluxes

Up[r , v] = r v · n− 1

2
|v · n| [[r ]]

Fh(r , v) = Up[r , v]− hα [[r ]]

Mária
Lukáčová
(Mainz)

Hana
Mizerová
(Bratislava)



Consistent approximation

Equation of continuity∫ T

0

∫
Ω

[%n∂tϕ+ mn · ∇xϕ] dxdt = e1,n[ϕ]

Momentum equation

∫ T

0

∫
Ω

[
mn · ∂tϕ +

mn ⊗mn

%n
: ∇xϕ+ p(%n)divxϕ

]
dxdt = e2,n[ϕ]

Stability - bounded energy

E(%n,mn) ≡
∫

Ω

[
1

2

|mn|2

%n
+ P(%n)

]
dx

<∼ 1

Consistency

e1,n[ϕ]→ 0, e2,n[ϕ]→ 0 as n→∞



Weak vs strong convergence

Weak convergence

%n → % weakly-(*) L∞(0,T ; Lγ(Ω))

mn → m weakly-(*) L∞(0,T ; L
2γ
γ+1 (Ω;Rd))

Strong convergence (Theorem EF, M.Hofmanová)

• Suppose
Ω ⊂ Rd bounded

%n → %, mn → m strongly a.a. pointwise in U open, ∂Ω ⊂ U

• Then the following is equivalent:

%,m weak solution to the Euler system

⇔

%n → %, mn → m strongly (pointwise) in Ω

Martina
Hofmanová
(Bielefeld)



Dissipative solutions – limits of numerical schemes

Dominic Breit
(Edinburgh)

Martina
Hofmanová
(Bielefeld)

Equation of continuity

∂t % + divxm = 0

Momentum balance

∂t m + divx

(
m⊗m

%

)
+∇xp(%) = −divxR

Energy inequality

d

dt
E(t) ≤ 0, E(t) ≤ E0, E0 =

∫
Ω

[
1

2

|m0|2

%0
+ P(%0)

]
dx

E ≡
(∫

Ω

[
1

2

|m|2

%
+ P(%)

]
dx + d

∫
Ω

trace[R]

)
Reynolds stress

R ∈ L∞(0,T ;M+(Ω;Rd×d
sym ))



Basic properties of dissipative solutions

Well posedness, weak strong uniqueness

Existence. Dissipative solutions exist globally in time for any finite
energy initial data

Limits of consistent approximations Limits of consistent
approximations are dissipative solutions, in particular limits of
consistent numerical schemes.

Compatibility. Any C 1 dissipative solution [%,m], % > 0 is a classical
solution of the Euler system

Weak–strong uniqueness. If [%̃, m̃] is a classical solution and [%,m]
a dissipative solution starting from the same initial data, then R = 0
and % = %̃, m = m̃.

Maximal dissipation principle. The exists a solution maximizing the
dissipation rate. Any such solution satisfies

‖R(t)‖M+(Ω;Rd×d
sym )
→ 0 as t →∞.



Semiflow selection

Set of data

D =

{
%,m,E

∣∣∣ ∫
Ω

1

2

|m|2

%
+ P(%) dx ≤ E

}
Set of trajectories

T =
{
%(t, ·),m(t, ·),E(t−, ·)

∣∣∣t ∈ (0,∞)
}

Solution set

U [%0,m0,E0] =
{

[%,m,E ]
∣∣∣[%,m,E ] dissipative solution

%(0, ·) = %0, m(0, ·) = m0, E(0+) ≤ E0

}
Semiflow selection – semigroup

U[%0,m0,E0] ∈ U [%0,m0,E0], [%0,m0,E0] ∈ D

U(t1 + t2)[%0,m0,E0] = U(t1)◦
[
U(t2)[%0,m0,E0]

]
, t1, t2 > 0

Andrej Markov
(1856–1933)

N. V. Krylov



Strong instead of weak (numerics)

Janos Komlos
(Rutgers
Univ.)

Komlos theorem (a variant of Strong Law of Large Numbers)

{Un}∞n=1 bounded in L1(Q)

⇒

1

N

N∑
k=1

Unk → U a.a. in Q as N →∞

Convergence of numerical solutions - EF, M.Lukáčová,
H.Mizerová 2018

1

N

N∑
k=1

%nk → % in L1((0,T )× Ω) as N →∞

1

N

N∑
k=1

mnk → m in L1((0,T )× Ω) as N →∞

1

N

N∑
k=1

[
1

2

|mn,k |2

%n,k
+ P(%n,k)

]
→ E ∈ L1((0,T )×Ω) a.a. in (0,T )×Ω



Computing defect – Young measure

Generating Young measure

Un = [%n,mn] ∈ Rd+1 phase space

{Un}∞n=1 bounded in L1(Q;Rd) ≈ νnt,x = δUn(t,x)

⇒

1

N

N∑
k=1

ν
nk
t,x → νt,x narrowly a.a. in Q as N →∞

Young measure

(t, x) ∈ Q 7→ νt,x ∈ P[Rd+1] weakly-(*) measurable mapping

R ≈
〈
ν;

m⊗m

%

〉
− m⊗m

%
〈ν; p(%)〉 − p(%)

Erich J. Balder
(Utrecht)



Computing defect numerically -EF, M.Lukáčová, B.She

Monge–Kantorowich (Wasserstein) distance

∥∥∥∥∥dist
(

1

N

N∑
k=1

ν
nk
t,x ; νt,x

)∥∥∥∥∥
Lq(Q)

→ 0

for some q > 1

Convergence in the first variation

1

N

N∑
k=1

〈
ν
nk
t,x ;

∣∣∣∣∣Ũ− 1

N

N∑
k=1

Un

∣∣∣∣∣
〉
→
〈
νt,x ;

∣∣∣Ũ−U
∣∣∣〉

in L1(Q)

Mária
Lukáčová
(Mainz)

Bangwei She
(CAS Praha)



Experiment I, density for
Kelvin–Helmholtz problem (M. Lukáčová, Yue Wang)

density %
n = 128, T = 2

Cèsaro averages
density %
n = 128, T = 2

density %
n = 256, T = 2

Cèsaro averages
density %
n = 256, T = 2

density %
n = 512, T = 2

Cèsaro averages
density %
n = 512, T = 2

density %
n = 1024, T = 2

Cèsaro averages
density %
n = 1024, T = 2



Experiment II, density variations for
Kelvin–Helmholtz problem (M. Lukáčová, Yue Wang)

density variation
n = 128, T = 2

density variation
n = 256, T = 2

Yue Wang, Mainz

density variation
n = 512, T = 2

Mária Lukáčová,
Mainz

density variation
n = 1024, T = 2


