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SYMPLECTIC EMBEDDING OF THIN DISCS INTO A BALL
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Abstract. We perform symplectic embeddings of ‘thin’ discs into a small ball in arbitrary
dimension, using the symplectic folding construction.
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1. Introduction

In this note, as a variant of the Gromov’s non-squeezing theorem, we perform

symplectic embeddings of ‘thin’ discs into a small ball in arbitrary dimension. More

precisely, the ‘thin disc’ is defined by

D2n
ε,R = [−ε, ε] × B2n−1

R

where Bk
R is a standard k-dimensional ball of radius R and we considerD2n

ε,R equipped

with a standard symplectic form as a subset of � 2n . Then our result is,

Theorem 1.1. For any R, r > 0 and any ball B2n
r of radius r with a stan-

dard symplectic structure, if we take ε small enough, then we can find symplectic

embeddings of D2n
ε,R into B2n

r .

The proof is based on making use of the flexibility of symplectomorphisms of di-

mension 2, which coincide with the volume preserving maps. The crucial technique

is the symplectic folding construction, which was initiated by Traynor [2] and de-

veloped by Lalonde and McDuff [1] to compare the displacement energy and the

symplectic capacity. In the next section we recall it, and the proof of the theorem is

given in the third section.
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2. Symplectic folding construction

Let (M, ω) be a symplectic manifold, A be a compact subset, and e(A) be its

displacement energy, i.e.

e(A) = inf{‖ϕ‖ : ϕ ∈ Ham (M), ϕ(A) ∩ A = ∅}

here ‖ϕ‖ is the Hofer’s norm,

‖ϕ‖ = infH(sup
x,t

H(x, t) − inf
x,t

H(x, t)),

where (x, t) ∈ M × [0, 1] and H ranges over the set of all compactly supported

Hamiltonian functions H : M × [0, 1] → � whose symplectic gradient vector fields
generate a time 1 map equal to ϕ.

Let H(x, t) be a Hamiltonian, ϕt
H its flow. Consider a hypersurface Q in M ×

[0, 1]× � defined by
Q = (x, t,−H(x, t)).

The manifold M × [0, 1] × � is equipped with a symplectic form ω + dt ∧ dz where

z is the standard coordinate of � . Then, Q has the characteristic foliation and its
flow coincides with ϕt

H . For the set A above and an arbitrary positive number ε,

there is a Hamiltonian H disjoining the set A, which is 0 near times t = 0, 1 and the

associated hypersurface Q is contained in M × [0, 1] × [0, e(A) + ε]. Let

R = [0, T ]× [0, e(A) + ε]

be a rectangle, with T any positive number. We define a positive number r by

r = 2Te(A).

Gluing the rectangles [0, 1]× [0, e(A) + ε] and R along the pairs of edges

({1} × [0, e(A) + ε], {0} × [0, e(A) + ε])

and

({0} × [0, e(A) + ε], {T} × [0, e(A) + ε])

where the left components of the brackets are edges of R and the right components are

those of the other rectangle, we get an annulus of area (1+T )(e(A)+ε). Denote this

annulus by X . Consider the symplectic manifold M ×B, where B is a symplectic 2

dimensional disc of area r. We can deformM ×B into a neighbourhood (inM × � 2 )
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of the manifold M ×Y , where Y = P1 ∪L∪P2 is the union of two rectangles P1 and

P2 of the same shape [0, T ]× [0, e(A)], joined by a line segment L. We define a map

i : A × Y → M × X

as follows.

1. A × P1 maps to M × [0, T ] × [0, e(A) + ε] by the inclusion, slightly parallel

translated to the second direction of the base to embed [0, e(A)] into the interior of

[0, e(A) + ε].

2. A × L maps to the hypersurface Q, along the flow line of the characteristic

foliation on Q.

3. A × P2 maps to M × [0, T ] × [0, e(A) + ε] by ϕ1
H × id′ where id′ is the above

mentioned slightly translated identity map of the base.

This map preserves the symplectic form, so by the symplectic neighbourhood

theorem, we can extend this map and embed a small neighbourhood of A × B in

M × B into M × X .

3. The proof

The proof is by induction. We begin with the case of n = 2. Obviously, it is

enough to embed [−ε, ε]× [−R, R]3 into B2n
r . We view [−ε, ε]× [−R, R]3 as [−ε, ε]×

[−R, R] × [−R, R]2. Then, because symplectomorphisms equal volume preserving

maps in dimension 2, we can easily symplectically isotope [−ε, ε]×[−R, R]×[−R, R]2

to B2
ε0

× [−R, R]2, ε0 sufficiently small. On the other hand, we can symplectically

embed arbitrary large 2-disc D into B4
r . For example, consider B

4
r as an affine part of

the complex projective plane and take a large degree smooth curve C. Then, again

because symplectomorphisms equal with volume preserving maps in dimension 2,

we can embed D into C ∩ B4
r symplectically. By the symplectic neighbourhood

theorem, we can embed B2
ε0
× [−R, R]2, and also [−ε, ε]× [−R, R]× [−R, R]2 into B4

r

symplectically, provided ε is sufficiently small. Next, suppose we have embeddings

of D2n
ε,R into B2n

r for all n < k, k some positive integer. We have to embed D2k
ε,R into

B2k
r . First, we view D2k

ε,R as D
2(k−1)
ε,R × [−R, R]2. By the induction hypothesis, we

can embed symplectically D
2(k−1)
ε,R into B

2(k−1)
ε0

, for ε0 sufficiently small compared

with r. So, it is enough to embed B
2(k−1)
ε0

× [−R, R]2 into B2k
r . This can be done by

the technique of symplectic folding. Namely, subdivide [−R, R]2 into a number of

small squares and deform it volume preservingly into a chain of those squares joined

by narrow strips. Each (square, strip, square)-triplet looks like Y in the previous

section. Then, we apply the folding construction to these triplets successively, and

we will finally embed the whole space into B2k
r spirally.
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