Photosynthetica, 2018 (vol. 56), issue 1

Photosynthetica 2018, 56(1):366-381 | DOI: 10.1007/s11099-017-0763-7

Photosynthesis and salinity: are these mutually exclusive?

S. Wungrampha1, R. Joshi1, S. L. Singla-Pareek2, A. Pareek1,*
1 Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
2 Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India

Photosynthesis has walked into the path of evolution for over millions of years. Organisms relying directly on photosynthesis, when subjected to adverse environments for a long duration, experience retardation in their growth and development. Salinity stress is perceived as one of the major threats to agriculture as it can cause an irreversible damage to the photosynthetic apparatus at any developmental stage of the plant. However, halophytes, a special category of plants, carry out all life processes, including photosynthesis, without showing any compromise even under high saline environments. The fascinating mechanism for Na+ exclusion from cytosol besides retaining photosynthetic efficiency in halophytes can provide a valuable genetic resource for improving salt stress tolerance in glycophytes. Understanding how plants stabilize their photosynthetic machinery and maintain the carbon balance under saline conditions can be extremely useful in designing crops for saline and dry lands.

Keywords: adaptation; chlorophyll; glycophytes; halophytes; photosynthesis; salinity

Received: May 15, 2017; Accepted: August 11, 2017; Published: March 1, 2018Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Wungrampha, S., Joshi, R., Singla-Pareek, S.L., & Pareek, A. (2018). Photosynthesis and salinity: are these mutually exclusive? Photosynthetica56(1), 366-381. doi: 10.1007/s11099-017-0763-7.
Download citation

Supplementary files

Download filephs-201801-0036_S1.pdf

File size: 241.19 kB

References

  1. Acosta-Motos J.R., Ortuño M.F., Bernal-Vicente A.: Plant responses to salt stress: Adaptive mechanisms.-Agronomy 7: 18, 2017. Go to original source...
  2. Adiga P.R., Prasad G.L.: Biosynthesis and regulation of polyamines in higher plants.-In: Galston A.W., Smith T.A. (ed.): Polyamines in Plants. Pp. 3-24. Springer, Dordrecht 1985. Go to original source...
  3. Ahmadizadeh M., Vispo N.A., Calapit-Palao C.D. et al.: Reproductive stage salinity tolerance in rice: a complex trait to phenotype.-Indian J. Plant Physi. 21: 528-356, 2016 Go to original source...
  4. Akhani H., Trimborn P., Ziegler H.: Photosynthetic pathways in Chenopodiaceae from Africa, Asia and Europe with their ecological, phytogeographical and taxonomical importance.-Plant Syst. Evol. 206: 187-221, 1997. Go to original source...
  5. Al-Hosani S., Oudah M.M., Henschel A. et al.: Global transcriptome analysis of salt acclimated Prochlorococcus AS9601.-Microbiol. Res. 176: 21-28, 2015. Go to original source...
  6. Allen J.F., Williams J.C.: Photosynthesis reaction centres.-FEBS Lett. 438: 5-9, 1998. Go to original source...
  7. Anwar K., Lakra N., Singla-Pareek S.L. et al.: Investigating abiotic stress response machinery in plants: The metabolomic approaches.-In: Dagar J.C., Sharma P.C., Sharma D.K. et al. (ed.): Innovative Saline Agriculture. Pp. 303-319. Springer, New Delhi 2016. Go to original source...
  8. Arnon D.I.: The light reactions of photosynthesis.-P. Natl. Acad. Sci. USA 69: 2883-2892, 1971. Go to original source...
  9. Arp W.J.: Effects of source-sink relations on photosynthetic acclimation to elevated CO2.-Plant Cell Environ. 14: 869-875, 1991. Go to original source...
  10. Ashraf M., Hameed M., Arshad M. et al.: Salt tolerance of some potential forage grasses from Cholistan desert of Pakistan.-In: Khan M.A., Weber D.J (ed.): Ecophysiol. High Salinity Tolerance Plants. Pp. 31-54. Springer, Dordrecht 2006. Go to original source...
  11. Aslam R., Bostan N., Maria M. et al: A critical review on halophytes: salt tolerant plants. - J. Med. Plants Res. 5: 7108-18, 2011.
  12. Asrar H., Hussain T., Hadi S.M. et al.: Salinity induced changes in light harvesting and carbon assimilating complexes of Desmostachya bipinnata (L.) Staph.-Environ. Exp. Bot. 135: 86-95, 2017. Go to original source...
  13. Athar H.U.R., Zafar Z.U., Ashraf M.: Glycinebetaine improved photosynthesis in canola under salt stress: evaluation of chlorophyll fluorescence parameters as potential indicators.-J. Agron. Crop Sci. 201: 428-442, 2015. Go to original source...
  14. Bassham J.A., Benson A.A., Calvin M.: The path of carbon in photosynthesis-J. Biol. Chem. 185: 781-787, 1950.
  15. Bassham J.A.: Mapping the carbon reduction cycle: a personal retrospective.-Photosynth. Res. 76: 35-52, 2003. Go to original source...
  16. Bastías E., González-Moro M.B., González-Murua C.: Interactive effects of excess boron and salinity on histological and ultrastructural leaves of Zea mays amylacea from the Lluta Valley (Arica-Chile).-Cienc. Investig. Agrar. 40: 581-595, 2013. Go to original source...
  17. Belkhodja R., Morales F., Abadia A. et al.: Chlorophyll fluorescence as a possible tool for salinity tolerance screening in barley (Hordeum vulgare L.).-Plant Physiol. 104: 667-673, 1994. Go to original source...
  18. Ben-Shem A., Frolow F., Nelson N.: Crystal structure of plant photosystem I.-Nature. 426: 630-635, 2003. Go to original source...
  19. Biel K., Fomina, I.: Benson-Bassham-Calvin cycle contribution to the organic life on our planet.-Photosynthetica 53: 161-167, 2015. Go to original source...
  20. Bose J., Shabala L., Pottosin I. et al.: Kinetics of xylem loading, membrane potential maintenance, and sensitivity of K+-permeable channels to reactive oxygen species: physiological traits that differentiate salinity tolerance between pea and barley.-Plant Cell Environ. 37: 589-600, 2014 Go to original source...
  21. Briat J.F., Dubos C., Gaymard F.: Iron nutrition, biomass production, and plant product quality.-Trends Plant Sci. 20: 33-40, 2015. Go to original source...
  22. Brugnoli E., Lauteri M.: Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C3 non-halophytes.-Plant Physiol. 95: 628-635, 1991. Go to original source...
  23. Busch F.A., Sage R.F.: The sensitivity of photosynthesis to O2 and CO2 concentration identifies strong RuBisCO control above the thermal optimum.-New Phytol. 213: 1036-1051, 2017. Go to original source...
  24. Cassaniti C., Leonardi C., Flowers T.J.: The effects of sodium chloride on ornamental shrubs.-Sci. Hortic.-Amsterdam 122: 586-593, 2009.
  25. Chaves M.M., Flexas J., Pinheiro C.: Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell.-Ann. Bot.-London 103: 551-560, 2009. Go to original source...
  26. Chen M.: Chlorophyll modifications and their spectral extension in oxygenic photosynthesis.-Annu. Rev. Biochem. 83: 317-340, 2014. Go to original source...
  27. Clijsters H., van Assche F.: Inhibition of photosynthesis by heavy metals.-Photosynth. Res. 7: 31-40, 1985 Das P., Nutan K.K., Singla-Pareek S.L. et al.: Understanding salinity responses and adopting' omics-based' approaches to generate salinity tolerant cultivars of rice.-Front. Plant Sci. 6: 712, 2015a.
  28. Das P., Nutan K.K., Singla-Pareek S.L. et al.: Oxidative environment and redox homeostasis in plants: dissecting out significant contribution of major cellular organelles.-Front. Environ. Sci. 2: 70, 2015b. Go to original source...
  29. Debez A., Braun H.P., Pich A. et al.: Proteomic and physiological responses of the halophyte Cakile maritima to moderate salinity at the germinative and vegetative stages.-J. Proteomics. 75: 5667-5694, 2012. Go to original source...
  30. Deinlein U., Stephan A.B., Horie T. et al.: Plant salt-tolerance mechanisms.-Trends Plant Sci. 19: 371-379, 2014. Go to original source...
  31. Delfine S., Alvino A., Zacchini M. et al.: Consequences of salt stress on conductance to CO2 diffusion, RuBisCO characteristics and anatomy of spinach leaves.-Aust. J. Plant Physiol. 25: 395-402, 1998.
  32. Demetriou G., Neonaki C., Navakoudis E. et al.: Salt stress impact on the molecular structure and function of the photosynthetic apparatus-the protective role of polyamines.-BBA-Bioenergetics 1767: 272-280, 2007. Go to original source...
  33. De-Paoli H.C., Borland A.M., Tuskan G.A. et al.: Synthetic biology as it relates to CAM photosynthesis: challenges and opportunities.-J. Exp. Bot. 65: 3381-3393, 2014. Go to original source...
  34. De Souza A.P., Gaspar M., Da-Silva E.A. et al.: Elevated CO2 increases photosynthesis, biomass and productivity, and modifies gene expression in sugarcane.-Plant Cell Environ. 31: 1116-1127, 2008. Go to original source...
  35. Diray-Arce J., Clement M., Gul B. et al.: Transcriptome assembly, profiling and differential gene expression analysis of the halophyte Suaeda fruticosa provides insights into salt tolerance.-BMC Genomics 16: 353, 2015. Go to original source...
  36. Dong C., Fu Y., Liu G. et al.: Low light intensity effects on the growth, photosynthetic characteristics, antioxidant capacity, yield and quality of wheat (Triticum aestivum L.) at different growth stages in BLSS.-Adv. Space Res. 53: 1557-1566, 2014. Go to original source...
  37. Duarte B., Santos D., Marques J.C. et al.: Ecophysiological adaptations of two halophytes to salt stress: photosynthesis, PS II photochemistry and anti-oxidant feedback-implications for resilience in climate change.-Plant Physiol. Bioch. 67: 178-188, 2013. Go to original source...
  38. Dyachenko O.V., Zakharchenko N.S., Shevchuk T.V. et al.: Effect of hypermethylation of CCWGG sequences in DNA of Mesembryanthemum crystallinum plants on their adaptation to salt stress.-Biochemistry-Moscow+ 71: 461-465, 2006. Go to original source...
  39. Farooq S., Azam F.: A new allopolyploid wheat for stressed lands and poverty alleviation.-Field Crop Res. 100: 369-373, 2007. Go to original source...
  40. Fleming I.: Absolute configuration and the structure of chlorophyll.-Nature 216: 151-152, 1967. Go to original source...
  41. Forkel M., Carvalhais N., Rödenbeck C. et al.: Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems.-Science 351: 696-699, 2016. Go to original source...
  42. Ghosh A., Pareek A., Sopory S.K. et al: A glutathione responsive rice glyoxalase II, OsGLYII-2, functions in salinity adaptation by maintaining better photosynthesis efficiency and anti-oxidant pool.-Plant J. 80: 93-105, 2014. Go to original source...
  43. Golldack D., Li C., Mohan H. et al.: Tolerance to drought and salt stress in plants: Unraveling the signaling networks.-Front. Plant Sci. 5: 151, 2014. Go to original source...
  44. Govindjee, Allen J.F., Beatty J.T.: Celebrating the millennium: historical highlights of Photosynthesis research, Part 3.-Photosynth. Res. 80: 1-13, 2004.
  45. Govindjee, Beatty J.T., Gest H.: Celebrating the millennium: historical highlights of Photosynthesis research, Part 2.-Photosynth. Res. 76: 1-11, 2003. Go to original source...
  46. Govindjee, Krogmann D.: Discoveries in oxygenic photosynthesis (1727-2003): a perspective.-Photosynth. Res. 80: 15-57, 2004.
  47. Govindjee, Veit W.: The Z-scheme of electron transport in photosynthesis. http://www.life.illinois.edu/govindjee/ZScheme.html (accessed continuously since August 2010), 2010.
  48. Gupta B., Huang B.: Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization.-Int. J. Genom. 2014: 701596, 2014. Go to original source...
  49. Gupta B.K., Sahoo K.K., Ghosh A. et al.: Manipulation of glyoxalase pathway confers tolerance to multiple stresses in rice.-Plant Cell Environ. DOI: 10.1111/pce.12968, 2017. Go to original source...
  50. Gupta B.K., Tripathi A.K., Joshi R. et al.: Designing climatesmart future crops employing signal transduction components.-In: Pandey G.K. (ed.): Elucidation of Abiotic Stress Signaling in Plants: Functional Genomics Perspectives, Vol 2. Pp. 393-413. Springer, New York 2015. Go to original source...
  51. Hayward H.E., Long E.M.: Anatomical and physiological responses of the tomato to varying concentrations of sodium chloride sodium sulphate, and nutrient solutions.-Bot. Gaz. 102: 437-462, 1941. Go to original source...
  52. Hernandez P., Müller M., Appel R.D.: Automated protein identification by tandem mass spectrometry: Issues and strategies.-Mass Spectrom. Rev. 25: 235-254, 2006. Go to original source...
  53. Hill R., Bendall F.: Function of the two cytochrome components in chloroplasts: A working hypothesis.-Nature 186: 136-137, 1960. Go to original source...
  54. Hoang T.M., Tran T.N., Nguyen T.K. et al.: Improvement of salinity stress tolerance in rice: challenges and opportunities.-Agronomy 6: 54, 2016. Go to original source...
  55. Horgan R.P., Kenny L.C.: SAC review: 'Omic' technologies: genomics, transcriptomics, proteomics and metabolomics.-Obstet. Gynecol. 13: 189-195, 2011. Go to original source...
  56. Hügler M., Sievert S.M.: Beyond the Calvin cycle: autotrophic carbon fixation in the ocean.-Annu. Rev. Mar. Sci. 3: 261-89, 2011. Go to original source...
  57. Ishida H., Yoshimoto K., Izumi M. et al.: Mobilization of RuBisCO and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process.-Plant Physiol. 148: 142-155, 2008. Go to original source...
  58. Ivanova T.V., Maiorova O.V., Orlova Y.V. et al.: Cell ultrastructure and fatty acid composition of lipids in vegetative organs of Chenopodium album L. under salt stress conditions.-Russ. J. Plant Physl+ 63: 763-775, 2016.
  59. Jacob T., Ritchie S., Assmann S.M., Gilroy S.: Abscisic acid signal transduction in guard cells is mediated by phospholipase D activity.-P. Natl. Acad. Sci. USA 96: 12192-12197, 1999. Go to original source...
  60. Jha B. Agarwal P.K., Reddy P.S. et al.: Identification of saltinduced genes from Salicornia brachiata, an extreme halophyte through expressed sequence tags analysis.-Genes Genet. Syst. 84: 111-120, 2009. Go to original source...
  61. Joshi R., Karan R., Singla-Pareek S.L. et al.: Ectopic expression of Pokkali phosphoglycerate kinase-2 (OsPGK2-P) improves yield in tobacco plants under salinity stress.-Plant Cell Rep. 35: 27-41, 2016. Go to original source...
  62. Joshi R., Prashat R., Sharma P.C. et al.: Physiological characterization of gamma-ray induced mutant population of rice to facilitate biomass and yield improvement under salinity stress.-Ind. J. Plant Physiol. 21: 545-555, 2016.
  63. Joshi R., Ramanarao M.V., Bedre R. et al.: Salt adaptation mechanisms of halophytes: Improvement of salt tolerance in crop plants.-In: Pandey G.K. (ed.): Elucidation of Abiotic Stress Signaling in Plants: Functional Genomics Perspectives, vol 2. Pp. 243-280. Springer, New York 2015. Go to original source...
  64. Joshi R., Sahoo K.K., Tripathi A.K. et al.: Knockdown of an inflorescence meristem-specific cytokinin oxidase-OsCKX2 in rice reduces yield penalty under salinity stress condition.-Plant Cell Environ. DOI: 10.1111/pce.12947, 2017. Go to original source...
  65. Juneau P., Barnett A., Méléder V. et al.: Combined effect of high light and high salinity on the regulation of photosynthesis in three diatom species belonging to the main growth forms of intertidal flat inhabiting microphytobenthos.-J. Exp. Mar. Biol. Ecol. 463: 95-104, 2015. Go to original source...
  66. Kale R., Hebert A.E., Frankel L.K. et al.: Amino acid oxidation of the D1 and D2 proteins by oxygen radicals during photoinhibition of Photosystem II.-P. Natl. Acad. Sci. USA 14: 2988-2993, 2017. Go to original source...
  67. Karan R., Singla-Pareek S.L., Pareek A.: Histidine kinase and response regulator genes as they relate to salinity tolerance in rice.-Funct. Integr. Genomic. 9: 411-417, 2009. Go to original source...
  68. Kebeish R., Niessen M., Thiruveedhi K. et al.: Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana.-Nat. Biotechnol. 25: 593-599, 2007. Go to original source...
  69. Koyro H.W., Hussain T., Huchzermeyer B. et al.: Photosynthetic and growth responses of a perennial halophytic grass Panicum turgidum to increasing NaCl concentrations.-Environ. Exp. Bot. 91: 22-29, 2013. Go to original source...
  70. Koyro H.W.: Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.).-Environ. Exp. Bot. 56: 136-146, 2006. Go to original source...
  71. Krupinska K.: Fate and activities of plastids during leaf senescence.-In: Wise R.R., Hoober J.K. (ed.): The Structure and Function of Plastids. Pp. 433-449. Springer, Dordrecht 2006. Go to original source...
  72. Kumar G., Kushwaha H.R., Panjabi-Sabharwal V. et al.: Clustered metallothionein genes are co-regulated in rice and ectopic expression of OsMT1e-P confers multiple abiotic stress tolerance in tobacco via ROS scavenging.-BMC Plant Biol. 12: 107, 2012. Go to original source...
  73. Kumar G., Purty R.S., Sharma M.P. et al.: Physiological responses among Brassica species under salinity stress show strong correlation with transcript abundance for SOS pathwayrelated genes.-J. Plant Physiol. 166: 507-520, 2009. Go to original source...
  74. Kumar R., Mustafiz A., Sahoo K.K. et al.: Functional screening of cDNA library from a salt tolerant rice genotype Pokkali identifies mannose-1-phosphate guanyl transferase gene (OsMPG1) as a key member of salinity stress response.-Plant Mol. Biol. 79: 555-568, 2012. Go to original source...
  75. Kumari S., Roy S., Singh P. et al.: Cyclophilins: proteins in search of function.-Plant Signal. Behav. 8: e22734, 2013. Go to original source...
  76. Kumari S., Sabharwal V.P.N., Kushwaha H.R. et al.: Transcriptome map for seedling stage specific salinity stress response indicates a specific set of genes as candidate for saline tolerance in Oryza sativa L.-Funct. Integr. Genom. 9: 109-123, 2009b. Go to original source...
  77. Kumari S., Singh P., Singla-Pareek S.L. et al.: Heterologous expression of a salinity and developmentally regulated rice cyclophilin gene (OsCyp2) in E. coli and S. cerevisiae confers tolerance towards multiple abiotic stresses.-Mol. Biotechnol. 42: 195-204, 2009a. Go to original source...
  78. Lakra N., Kaur C., Anwar K. et al.: Proteomics of contrasting rice genotypes: Identification of potential targets for raising crops for saline environment.-Plant Cell Environ. DOI: 10.1111/pce.12946, 2017. Go to original source...
  79. Lakra N., Nutan K.K., Das P. et al: A nuclear-localized histonegene binding protein from rice (OsHBP1b) functions in salinity and drought stress tolerance by maintaining chlorophyll content and improving the antioxidant machinery.-J. Plant Physiol. 176: 36-46, 2015. Go to original source...
  80. Lazcano A., Miller S.L.: The origin and early evolution of life: Prebiotic chemistry, the Pre-RNA world, and time.-Cell 85: 793-798, 1996. Go to original source...
  81. Lee M.H., Cho E.J., Wi S.G. et al.: Divergences in morphological changes and antioxidant responses in salt-tolerant and saltsensitive rice seedlings after salt stress.-Plant Physiol. Bioch. 70: 325-35, 2013. Go to original source...
  82. Leegood R.C.: A welcome diversion from photorespiration.-Nat. Biotechnol. 25: 539-540, 2007. Go to original source...
  83. Leverenz J.W.: Chlorophyll content and the light response curve of shade-adapted conifer needles.-Physiol. Plantarum 71: 20-29, 1987. Go to original source...
  84. Liu X., Fan Y., Mak M. et al.: QTLs for stomatal and photosynthetic traits related to salinity tolerance in barley.-BMC Genomics. 18: 9, 2017. Go to original source...
  85. Males J, Griffiths H.: Stomatal biology of CAM plants.-Plant Physiol. 174: 550-560, 2017. Go to original source...
  86. Mano J., Endo T., Miyake C.: How do photosynthetic organisms manage light stress? A tribute to the late Professor Kozi Asada.-Plant Cell Physiol. 57: 1351-1353, 2016. Go to original source...
  87. Maríálová L., Vítámvás P., Hynek R. et al.: Proteomic response of Hordeum vulgare cv. Tadmor and Hordeum marinum to salinity stress: similarities and differences between a glycophyte and a halophyte.-Front. Plant Sci. 7: 1154, 2016.
  88. Mastrobuoni G, Irgang S, Pietzke M. et al.: Proteome dynamics and early salt stress response of the photosynthetic organism Chlamydomonas reinhardtii.-BMC Genomics 13: 215, 2012 Go to original source...
  89. Mathur S., Agrawal D., Jajoo A.: Photosynthesis: response to high temperature stress.-J. Photoch. Photobio. B 137: 116-126, 2014. Go to original source...
  90. McLaughlin S.B., McConathy R.K., Duvick D. et al.: Effects of chronic air pollution stress on photosynthesis, carbon allocation, and growth of white Pine trees.-Forest Sci. 28: 60-70, 1982.
  91. Meinzer F.C., Zhu J.: Efficiency of C4 photosynthesis in Atriplex lentiformis under salinity stress.-Funct. Plant Biol. 26: 79-86, 1999.
  92. Meiri A., Poljakoff-Mayber A.: The effect of chlorine salinity on growth of bean leaves in thickness and in area.-Israel J. Bot. 16: 115-123, 1967.
  93. Meng F., Luo Q., Wang Q. et al.: Physiological and proteomic responses to salt stress in chloroplasts of diploid and tetraploid black locust (Robinia pseudoacacia L.).-Sci. Rep. 6: 23098, 2016. Go to original source...
  94. Meng H.B., Jiang S.S., Hua S.J. et al.: Comparison between a tetraploid turnip and its diploid progenitor (Brassica rapa L.): the adaptation to salinity stress.-Agr. Sci. China 10: 363-375, 2011. Go to original source...
  95. Ming R., [ptVan Buren R., Wai C.M. et al.: The pineapple genome and the evolution of CAM photosynthesis.-Nat. Genet. 47: 1435-1442, 2015. Go to original source...
  96. Mohapatra P.K., Singh N.R.: Teaching the Z-Scheme of electron transport in photosynthesis: a perspective.-Photosynth. Res. 123: 105-114, 2015. Go to original source...
  97. Moinuddin M., Gulzar S., Hameed A. et al.: Differences in photosynthetic syndromes of four halophytic marsh grasses in Pakistan.-Photosynth. Res. 131: 51-64, 2017. Go to original source...
  98. Müller M., Santarius K.A.: Changes in chloroplast membrane lipids during adaptation of barley to extreme salinity.-Plant Physiol. 62: 326-329, 1978. Go to original source...
  99. Munns R., Gilliham M.: Salinity tolerance of crops-what is the cost?-New Phytol. 208: 668-673, 2015. Go to original source...
  100. Murata N., Takahashi S., Nishiyama Y. et al.: Photoinhibition of photosystem II under environmental stress.-BBABioenergetics 1767: 414-421, 2007. Go to original source...
  101. Nawaz I., Iqbal M., Hakvoort H.W. et al.: Expression levels and promoter activities of candidate salt tolerance genes in halophytic and glycophytic Brassicaceae.-Environ. Exp. Bot. 99: 59-66, 2014. Go to original source...
  102. Neale P.J., Melis A.: Salinity-stress enhances photoinhibition of photosynthesis in Chlamydomonas reinhardtii.-J. Plant Physiol. 134: 619-622, 1989. Go to original source...
  103. Neelam S., Subramanyam R.: Alteration of photochemistry and protein degradation of photosystem II from Chlamydomonas reinhardtii under high salt grown cells.-J. Photoch. Photobio. B 124: 63-70, 2013. Go to original source...
  104. Negrão S., Schmöckel S.M., Tester M.: Evaluating physiological responses of plants to salinity stress.-Ann. Bot.-London 119: 1-11, 2017. Go to original source...
  105. Nieva F.J.J., Castellanos E.M., Figueroa M.E. et al.: Gas exchange and chlorophyll fluorescence of C3 and C4 saltmarsh species.-Photosynthetica 36: 397-406, 1999. Go to original source...
  106. Nongpiur R., Soni P., Karan R. et al.: Histidine kinases in plants: cross talk between hormone and stress responses.-Plant Signal. Behav. 7: 1230-1237, 2012. Go to original source...
  107. Nongpiur R.C., Singla-Pareek S.L., Pareek A.: Genomics approaches for improving salinity stress tolerance in crop plants.-Curr. Genomics 17: 343-357, 2016. Go to original source...
  108. Oukarroum A., Bussotti F., Goltsev V. et al.: Correlation between reactive oxygen species production and photochemistry of photosystems I and II in Lemna gibba L. plants under salt stress.-Environ. Exp. Bot. 109: 80-88, 2015. Go to original source...
  109. Ozfidan-Konakci C., Uzilday B., Ozgur R. et al.: Halophytes as a source of salt tolerance genes and mechanisms: a case study for the Salt Lake area, Turkey.-Funct. Plant Biol. 43: 575-589, 2016. Go to original source...
  110. Paredes M., Quiles M.J.: The effects of cold stress on photosynthesis in Hibiscus plants.-PLoS ONE 10: e0137472, 2015. Go to original source...
  111. Pareek A., Singla S.L., Grover A.: Immunological evidence for accumulation of two high-molecular-weight (104 and 90 kDa) HSPs in response to different stresses in rice and in response to high temperature stress in diverse plant genera.-Plant Mol. Biol. 29: 293-301, 1995. Go to original source...
  112. Pareek A., Singla-Pareek S.L., Grover A.: Proteins alterations associated with salinity, desiccation, high and low temperature stresses and abscisic acid application in seedlings of Pusa 169, a high-yielding rice (Oryza sativa L.) cultivar.-Curr. Sci. 75: 1023-1035, 1998.
  113. Pareek A., Singla S.L., Grover A.: Short-term salinity and high temperature stress-associated ultrastructural alterations in young leaf cells of Oryza sativa L.-Ann. Bot.-London 80: 629-639, 1997. Go to original source...
  114. Pareek A., Sopory S.K., Bohnert H.J. et al.: Abiotic Stress Adaptation in Plants. Pp. 526. Springer, Dordrecht 2010. Go to original source...
  115. Percey W.J., McMinn A., Bose J. et al.: Salinity effects on chloroplast PSII performance in glycophytes and halophytes.-Funct. Plant Biol. 43: 1003-1015, 2016.
  116. Poljakoff-Mayber A.: Morphological and anatomical changes in plants as a response to salinity stress.-In: Poljakoff-Mayber A., Gale J. (ed.): Plants in Saline Environments. Pp. 97-117. Springer, Berlin-Heidelberg 1975. Go to original source...
  117. Porcel R., Redondo-Gómez S., Mateos-Naranjo E. et al.: Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces nonphotochemical quenching in rice plants subjected to salt stress.-J. Plant Physiol. 185: 75-83, 2015. Go to original source...
  118. Pospíšil P.: Production of reactive oxygen species by photosystem II.-BBA-Bioenergetics 1787: 1151-1160, 2009. Go to original source...
  119. Prins A., van Heerden P.D.R., Olmos E. et al.: Cysteine proteinases regulate chloroplast protein content and composition in tobacco leaves: a model for dynamic interactions with ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) vesicular bodies.-J. Exp. Bot. 59: 1935-1950, 2008.
  120. Purty R.S., Kumar G., Singla-Pareek S.L. et al.: Towards salinity tolerance in Brassica: an overview.-Physiol. Mol. Biol. Plants 14: 39-49, 2008. Go to original source...
  121. Qadir M., Quillérou E., Nangia V. et al.: Economics of saltinduced land degradation and restoration.-Nat. Resour. Forum 38: 282-295, 2014. Go to original source...
  122. Rabhi M., Castagna A., Remorini D. et al.: Photosynthetic responses to salinity in two obligate halophytes: Sesuvium portulacastrum and Tecticornia indica.-S. Afr. J. Bot. 79: 39-47, 2012. Go to original source...
  123. Rabhi M., Hafsi C., Lakhdar A. et al.: Evaluation of the capacity of three halophytes to desalinize their rhizosphere as grown on saline soils under nonleaching conditions.-Afr. J. Eco. 47: 463-468, 2009. Go to original source...
  124. Rahman H., Jagadeeshselva N., Valarmathi R. et al.: Transcriptome analysis of salinity responsiveness in contrasting genotypes of finger millet (Eleusine coracana L.) through RNA-sequencing.-Plant Mol. Biol. 85: 485-503, 2014. Go to original source...
  125. Raines C.A.: The Calvin cycle revisited.-Photosynth. Res. 75: 1-10, 2003. Go to original source...
  126. Ramani B., Zorn H., Papenbrock J.: Quantification and fatty acid profiles of sulfolipids in two halophytes and a glycophyte grown under different salt concentrations.-Z. Naturforsch. 59: 835-842, 2004. Go to original source...
  127. Rangani J., Parida A.K., Panda A. et al.: Coordinated changes in antioxidative enzymes protect the photosynthetic machinery from salinity induced oxidative dand confer salt tolerance in an extreme halophyte Salvadora persica L.-Front. Plant Sci. 7: 50, 2016.
  128. Reddy A.R., Chaitanya K.V., Vivekanandan M.: Droughtinduced responses of photosynthesis and antioxidant metabolism in higher plants.-J. Plant Physiol. 161: 1189-1202, 2004. Go to original source...
  129. Redondo-Gómez S., Mateos-Naranjo E., Cambrolle J. et al.: Carry-over of differential salt tolerance in plants grown from dimorphic seeds of Suaeda splendens.-Ann. Bot.-London 102: 103-112, 2008. Go to original source...
  130. Sage R.F.: Photosynthetic efficiency and carbon concentration in terrestrial plants: the C4 and CAM solutions.-J. Exp. Bot. 65: 3323-3325, 2014. Go to original source...
  131. Samira M., Hichem H., Boughalleb F. et al.: Effect of salinitylight interaction on the activity of photosystem II of excised leaves of maize.-Afr. Crop Sci. J. 23: 343-354, 2015.
  132. Sang T., Shan X., Li B. et al.: Comparative proteomic analysis reveals the positive effect of exogenous spermidine on photosynthesis and salinity tolerance in cucumber seedlings.-Plant Cell Rep. 35: 1769-1782, 2016. Go to original source...
  133. Schieber M., Chandel N.S.: ROS function in redox signaling and oxidative stress.-Curr. Biol. 24: R453-R462, 2014. Go to original source...
  134. Seepratoomrosh J., Pokethitiyook P., Meetam M. et al.: The effect of light stress and other culture conditions on photoinhibition and growth of Dunaliella tertiolecta.-Appl. Biochem. Biotech. 178: 396-407, 2016. Go to original source...
  135. Seki M., Ishida J., Narusaka M. et al.: Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray.-Plant J. 31: 279-292, 2002. Go to original source...
  136. Senge M.O., Ryan A.A., Letchford K.A. et al.: Chlorophylls, symmetry, chirality, and photosynthesis.-Symmetry 6: 781-843, 2014. Go to original source...
  137. Sengupta S., Majumder A.L.: Insight into the salt tolerance factors of a wild halophytic rice, Porteresia coarctata: a physiological and proteomic approach.-Planta 229: 911-929, 2009. Go to original source...
  138. Shabala S., Cuin T.A., Prismall L. et al.: Expression of animal CED-9 anti-apoptotic gene in tobacco modifies plasma membrane ion fluxes in response to salinity and oxidative stress.-Planta 227: 189-197, 2007. Go to original source...
  139. Shabala S., Mackay A.: Ion transport in halophytes.-Adv. Bot. Res. 57: 151-187, 2011. Go to original source...
  140. Shabala S.: Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops.-Ann. Bot.-London 112: 1209-1221, 2013. Go to original source...
  141. Sharan A., Soni P., Nongpiur R.C. et al.: Mapping the 'Two component system' network in rice.-Sci. Rep. 7: 9287, 2017. Go to original source...
  142. Sharma P., Jha A.B., Dubey R.S. et al.: Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions.-J. Bot. 2012: 217037, 2012. Go to original source...
  143. Sharma R., Mishra M., Gupta B. et al.: De novo assembly and characterization of stress transcriptome in a salinity-tolerant variety CS52 of Brassica juncea.-PLoS ONE 10: e0126783, 2015. Go to original source...
  144. Shevela D., Björn L.O., Govindjee.: Evolution of the Z-scheme of photosynthesis: a perspective.-Photosynth. Res. 133: 5-15, 2017.
  145. Shu S., Guo S.R., Sun J. et al.: Effects of salt stress on the structure and function of the photosynthetic apparatus in Cucumis sativus and its protection by exogenous putrescine.-Physiol. Plantarum 146: 285-296, 2012 Go to original source...
  146. Singh A.K., Kumar R., Pareek A. et al.: Overexpression of rice CBS domain containing protein improves salinity, oxidative, and heavy metal tolerance in transgenic tobacco.-Mol. Biotechnol. 52: 205-216, 2012. Go to original source...
  147. Singla-Pareek S.L., Yadav S.K., Pareek A. et al.: Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II.-Transgenic Res. 17: 171-180, 2008. Go to original source...
  148. Sobhanian H., Motamed N., Jazii F.R. et al.: Salt stress induced differential proteome and metabolome response in the shoots of Aeluropus lagopoides (Poaceae), a halophyte C4 plant.-J. Proteome Res. 9: 2882-2897, 2010. Go to original source...
  149. Soda N., Sharan A., Gupta B.K. et al.: Evidence for nuclear interaction of a cytoskeleton protein (OsIFL) with metallothionein and its role in salinity stress tolerance.-Sci. Rep. 6: 34762, 2016. Go to original source...
  150. Soni P., Nutan K.K., Soda N. et al.: Towards understanding abiotic stress signaling in plants: convergence of genomic, transcriptomic, proteomic, and metabolomic approaches.-In: Paney G.K (ed.): Elucidation of Abiotic Stress Signaling in Plants. Vol. 2. Pp. 3-40. Springer, New York 2015. Go to original source...
  151. Stanley S.M.: An ecological theory for the sudden origin of multicellular life in the late Precambrian.-P. Natl. Acad. Sci. USA 70: 1486-1489, 1973. Go to original source...
  152. Stebbins G. L.: Chromosomal variation and evolution.-Science 152: 1463-1469, 1966. Go to original source...
  153. Stepien P., Johnson G.N.: Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte Thellungiella: role of the plastid terminal oxidase as an alternative electron sink.-Plant Physiol. 149: 1154-1165, 2009. Go to original source...
  154. Strogonov B.P.: Physiological Basis of Salt Tolerance of Plants (as Affected by Various Types of Salinity). Pp. 279. Akademia Nauk SSSR, Moskva 1964.
  155. Sudhir P.R., Pogoryelov D., Kovacs L. et al.: The effects of salt stress on photosynthetic electron transport and thylakoid membrane proteins in the cyanobacterium Spirulina platensis.-J. Biochem. Mol. Biol. 38: 481-485, 2005.
  156. Suga M., Akita F., Hirata K. et al.: Native structure of photosystem II at 1.95 A resolution viewed by femtosecond Xray pulses.-Nature 517: 99-103, 2015. Go to original source...
  157. Sultana N., Ikeda T., Itoh R.: Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains.-Environ. Exp. Bot. 42: 211-220, 1999. Go to original source...
  158. Takache H., Pruvost J., Marec H.: Investigation of light/dark cycles effects on the photosynthetic growth of Chlamydomonas reinhardtii in conditions representative of photobioreactor cultivation. - Algal Res. 8: 192-204, 2015. Go to original source...
  159. Tezara W., Mitchell V.J., Driscoll S.D. et al.: Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. - Nature 401: 914-917, 1999. Go to original source...
  160. Thagela P., Yadav R.K., Mishra V. et al.: Salinity-induced inhibition of growth in the aquatic pteridophyte Azolla microphylls primarily involves inhibition of photosynthetic components and signaling molecules as revealed by proteome analysis. - Protoplasma 254: 303-313, 2017. Go to original source...
  161. Theerawitaya C., Samphumphaung T., Cha-Um S. et al.: Responses of Nipa palm (Nypa fruticans) seedlings, a mangrove species, to salt stress in pot culture. - Flora 209: 597-603, 2014. Go to original source...
  162. Thomas B.J., Gest H., Govindjee.: Celebrating the millennium. historical highlights of photosynthesis research. - Photosynth. Res. 73: 1-6, 2002.
  163. Tripathi A.K., Pareek A., Singla-Pareek S.L.: A NAP-family histone chaperone functions in abiotic stress response and adaptation.-Plant Physiol. 171: 2854-2868, 2016. Go to original source...
  164. Udovenko G.V., Mashanskiï V.F., Sinitskaya I.A.: Changes of the root cell ultrastructure in plants with different salt tolerance during salinization.-Fiziol. Rast. 17: 975-981, 1970.
  165. United Nation University Institute for Water, Environment and Health (UNU-INWEH) report. Pp. 26. Hamilton, Canada 2014
  166. Vinyard D.J., Ananyev G.M., Dismukes G.C.: Photosystem II: the reaction centre of oxygenic photosynthesis. - Annu. Rev. Biochem. 82: 577-606, 2013. Go to original source...
  167. Volkov V.: Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes. - Front. Plant Sci. 6: 873, 2015. Go to original source...
  168. von Caemmerer S., Quick W.P., Furbank R.T.: The development of C4 rice: current progress and future challenges. - Science 336: 1671-1672, 2012. Go to original source...
  169. von Willert D.J., Kramer D.: [Ultrastructure and crassulacean acid metabolism in Mesembryanthemum crystallinum leaves during normal and NaCl-induced ageing.] - Planta 107: 227-237, 1972. [In German] Go to original source...
  170. Wada S., Ishida H., Izumi M. et al.: Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. - Plant Physiol. 149: 885-893, 2009. Go to original source...
  171. Wang L., Liang W., Xing J. et al.: Dynamics of chloroplast proteome in salt-stressed mangrove Kandelia candel (L.) Druce. - J. Proteome Res. 12: 5124-5136, 2013. Go to original source...
  172. Wang P., Song C.P.: Guard-cell signalling for hydrogen peroxide and abscisic acid. - New Phytol. 178:703-718, 2008. Go to original source...
  173. Wang Y., Chu Y., Liu G. et al.: Identification of expressed sequence tags in an alkali grass (Puccinellia tenuiflora) cDNA library. - J. Plant Physiol. 164: 78-89, 2007. Go to original source...
  174. Wang Y., Nii N.: Changes in chlorophyll, ribulose bisphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. - J. Hortic. Sci. Biotechnol. 75: 623-627, 2000. Go to original source...
  175. Williams B.P., Aubry S., Hibberd J.M.: Molecular evolution of genes recruited into C(4) photosynthesis. - Trends Plant Sci. 17: 213-220, 2012. Go to original source...
  176. Willows R.D., Li Y., Scheer H. et al.: Structures of chlorophyll f. - Org. Lett. 15: 1588-90, 2013. Go to original source...
  177. Wu H., Shabala L., Barry K. et al.: Ability of leaf mesophyll to retain potassium correlates with salinity tolerance in wheat and barley. - Physiol. Plantarum 149: 515-527, 2013. Go to original source...
  178. Yamane K., Taniguchi M., Miyake H.: Salinity-induced subcellular accumulation of H2O2 in leaves of rice. - Protoplasma 249: 301-308, 2012. Go to original source...
  179. Yamori W., Shikanai T.: Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. - Annu. Rev. Plant Biol. 67:81-106, 2016. Go to original source...
  180. Yang C., Zhao L., Zhang H. et al.: Evolution of physiological responses to salt stress in hexaploid wheat. - P. Natl. Acad. Sci. USA 12: 11882-11887, 2014. Go to original source...
  181. Yi X., Sun Y., Yang Q. et al.: Quantitative proteomics of Sesuvium portulacastrum leaves revealed that ion transportation by V-ATPase and sugar accumulation in chloroplast played crucial roles in halophyte salt tolerance. - J Proteomics 99: 84-100, 2014. Go to original source...
  182. Yoshida T., Mogami J., Yamaguchi-Shinozaki K.: ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. - Curr. Opin. Plant Biol. 21: 133-139, 2014. Go to original source...
  183. Yu Y., Assmann S.M.: The effect of NaCl on stomatal opening in Arabidopsis wild type and agb1 heterotrimeric G-protein mutant plants. - Plant Signal. Behav. 11: e1085275, 2016. Go to original source...
  184. Zhang Y., Lai J., Sun S. et al.: Comparison analysis of transcripts from the halophyte Thellungiella halophila. - J. Integr. Plant Biol. 50: 1327-1335, 2008. Go to original source...
  185. Zhang Y.M., Ma H.L., Calderón-Urrea A. et al.: Anatomical changes to protect organelle integrity account for tolerance to alkali and salt stresses in Melilotus officinalis. - Plant Soil 406: 327-340, 2016. Go to original source...