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1. Introduction

In control theory, mainly, if we want to obtain necessary optimality conditions,

it is essential to have several “differentiability” properties of solutions with respect

to initial conditions. One of the most powerful results in the theory of differential

equations, the classical Bendixson-Picard-Lindelöf theorem, states that the maximal

flow of a differential equation is differentiable with respect to initial conditions, and

its derivatives verify the variational equation. This result has been generalized in

various ways to differential inclusions by considering several variational inclusions

and proving the corresponding theorems that extend the Bendixson-Picard-Lindelöf

theorem.

The present paper is concerned with second-order differential inclusions of the

form

(1.1) (p(t)x′(t))′ ∈ F (t, x(t)) a.e. ([0, T ]),

with initial conditions

(1.2) x(0) = x0, x′(0) = x1,
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where F : [0, T ] × X → P(X) is a set-valued map, X is a separable Banach space,

x0, x1 ∈ X and p(·) : [0, T ] → (0,∞) is continuous.

Even if we deal with an initial value problem instead of a boundary value problem,

the differential inclusion (1.1)–(1.2) may be regarded as an extension to the set-valued

framework of the classical Sturm-Liouville differential equation. Several existence

results for problem (1.1)–(1.2) may be found in [2], [3], [7].

The aim of this note is to extend the results concerning the differentiability of

solutions of differential inclusions with respect to initial conditions to the solutions

of problem (1.1). The results we extend, known as the contingent, the intermediate

(quasitangent) and the circatangent variational inclusion, are obtained in the “clas-

sical case” of first-order differential inclusions. For these results and for a complete

discussion on this topic we refer to [1].

The proofs of our results follow by an approach similar to the classical case of

differential inclusions ([1], [6]) and use a recent result ([2]) concerning the existence

of solutions of problem (1.1).

The paper is organized as follows: in Section 2 we present preliminary results to

be used in the next section and in Section 3 we prove our main results.

2. Preliminaries

In this short section we recall some basic notation and concepts concerning differ-

ential inclusions.

Let Y be a normed space, X ⊂ Y and x ∈ X (the closure of X).

From the multitude of the tangent cones in literature (e.g. [1]) we recall only the

contingent, the quasitangent and Clarke’s tangent cones, defined, respectively, by

KxX = {v ∈ Y ; ∃sm → 0+, ∃vm → v : x + smvm ∈ X},

QxX = {v ∈ Y ; ∀sm → 0+, ∃vm → v : x + smvm ∈ X},

CxX =
{

v ∈ Y ; ∀(xm, sm) → (x, 0+), xm ∈ X, ∃ym ∈ X :
ym − xm

sm
→ v

}

.

These cones are related as follows: CxX ⊂ QxX ⊂ KxX .

Corresponding to each type of the tangent cone, say τxX , one may introduce a set-

valued directional derivative of a multifunction G(·) : X ⊂ Y → P(Y ) (in particular

of a single-valued mapping) at a point (x, y) ∈ Graph(G) as follows:

τyG(x; v) = {w ∈ Y ; (v, w) ∈ τ(x,y) Graph(G)}, v ∈ τxX.

Let us denote by I the interval [0, T ], T > 0 and let X be a real separable Banach

space with the norm | · | and with the corresponding metric d(·, ·). Denote by B the

closed unit ball in X .
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Consider a set-valued map F : I × X → P(X), x0, x1 ∈ X and a continuous

mapping p(·) : I → (0,∞) that define the Cauchy problem (1.1).

A continuous mapping x(·) ∈ C(I, X) is called a solution of problem (1.1) if there

exists a (Bochner) integrable function f(·) ∈ L1(I, X) such that

f(t) ∈ F (t, x(t)) a.e. (I),(2.1)

x(t) = x0 + p(0)x1

∫ t

0

1

p(s)
ds +

∫ t

0

1

p(s)

∫ s

0

f(u) du ds ∀t ∈ I.(2.2)

Note that, if we denote G(t, u) :=
∫ t

u
1

p(s) , t ∈ I, then (2.2) may be rewritten as

(2.3) x(t) = x0 + p(0)x1G(t, 0) +

∫ t

0

G(t, u)f(u) du ∀t ∈ I.

We shall call (x(·), f(·)) a trajectory-selection pair of (1.1) if (2.1) and (2.2) are

satisfied.

We shall use the following notation for the solution sets of (1.1)

(2.4) S(x0, x1) = {(x(·), f(·)); (x(·), f(·)) is a trajectory-selection pair of (1.1)}.

In what follows y0, y1 ∈ X , g(·) ∈ L1(I, X), and y(·) is a solution of the Cauchy

problem

(2.5) (p(t)y′(t))′ = g(t), y(0) = y0, y′(0) = y1.

Hypothesis 2.1. i) F (·, ·) : I × X → P(X) has nonempty closed values and for

every x ∈ X , F (·, x) is measurable.

ii) There exist β > 0 and L(·) ∈ L1(I, (0,∞)) such that for almost all t ∈ I, F (t, ·)

is L(t)-Lipschitz on y(t) + βB in the sense that

dH(F (t, x1), F (t, x2)) 6 L(t)|x1 − x2| ∀ x1, x2 ∈ y(t) + βB,

where dH(A, C) is the Hausdorff distance between A, C ⊂ X :

dH(A, C) = max{d∗(A, C), d∗(C, A)}, d∗(A, C) = sup{d(a, C); a ∈ A}.

iii) The function t → γ(t) := d(g(t), F (t, y(t)) is integrable on I.

Set m(t) = exp
(

MT
∫ t

0
L(u) du

)

, t ∈ I andM := sup
t∈I

1/p(t). Note that |G(t, u)| 6

M(t − u) ∀t, u ∈ I, u 6 t.
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On C(I, X) × L1(I, X) we consider the norm

|(x, f)|C×L = |x|C + |f |1 ∀ (x, f) ∈ C(I, X) × L1(I, X),

where, as usual, |x|C = sup
t∈I

|x(t)|, x ∈ C(I, X) and |f |1 =
∫ T

0
|f(t)| dt, f ∈ L1(I, X).

The next result (see [2]) is an extension of Filippov’s theorem concerning the

existence of solutions to a Lipschitzian differential inclusion (see [6]), to second-order

differential inclusions of the form (1.1).

Theorem 2.1. Consider δ > 0, assume that Hypothesis 2.1 is satisfied and set

η(t) = m(t)(δ + MT
∫ t

0 γ(s) ds).

If η(T ) 6 β, then for any x0, x1 ∈ X with (|x0 − y0| + MTp(0)|x1 − y1|) 6 δ and

any ε > 0 there exists (x(·), f(·)) ∈ S(x0, x1) such that

|x(t) − y(t)| 6 η(t) + εMTtm(t) ∀t ∈ I,

|f(t) − g(t)| 6 L(t)(η(t) + εMTtm(t)) + γ(t) + ε a.e. (I).

3. Main results

Let (y(·), g(·)) be a trajectory-selection pair of problem (1.1). We wish to “lin-

earize” (1.1) along (y(·), g(·)) by replacing it by several second-order variational

inclusions.

Consider, first, the quasitangent variational inclusion

(3.1)

{

(p(t)w′(t))′ ∈ Qg(t)(F (t, ·))(y(t); w(t)) a.e. (I)

w(0) = u, w′(0) = v,

where u, v ∈ X .

Theorem 3.1. Consider the solution map S(·, ·) as a set valued map from X×X

into C(I, X) × L1(I, X) and assume that Hypothesis 2.1 is satisfied.

Then for any u, v ∈ X and any trajectory-selection pair (w, π) of the linearized

inclusion (3.1) one has

(w, π) ∈ Q(y,g)S((y(0), y′(0); (u, v)).
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P r o o f. Let u, v ∈ X and let (w, π) ∈ C(I, X) × L1(I, X) be a trajectory-

selection pair of (3.1). By the definition of the quasitangent derivative and from the

Lipschitzianity of F (t, ·) for almost all t ∈ I we have

(3.2) lim
h→0+

d
(

π(t),
F (t, y(t) + hw(t)) − g(t)

h

)

= 0.

Moreover, since g(t) ∈ F (t, y(t)) a.e. (I), from Hypothesis 2.1, for all small enough

h > 0 and for almost all t ∈ I one has

d(g(t) + hπ(t), F (t, y(t) + hw(t))) 6 h(|π(t)| + L(t)|w(t)|).

By standard arguments (e.g., Lemmas 1.4 and 1.5 in [6]) the function t → d(g(t)+

hπ(t), F (t, y(t) + hw(t))) is measurable. Therefore, using the Lebesgue dominated

convergence theorem we infer

(3.3)

∫ T

0

d(g(t) + hπ(t), F (t, y(t) + hw(t))) = o(h),

where lim
h→0+

o(h)/h = 0.

We apply Theorem 2.1 with ε = h2 and by (3.3) we deduce the existence ofM > 0

and of trajectory-selection pairs (yh(·), gh(·)) of the second-order differential inclusion

(1.1) satisfying

|yh − y − hw|C + |gh − g − hπ|1 6 M(o(h) + h2),

yh(0) = y(0) + hu, y′

h(0) = y′(0) + hv,

which implies

lim
h→0+

yh − y

h
= w in C(I, X),

lim
h→0+

gh − g

hn
= π in L1(I, X).

Therefore

lim
h→0+

dC×L

(

(w, π),
S((y(0) + hu, y′(0) + hv)) − (y, g)

h

)

= 0

and the proof is complete. �

We consider next the variational inclusion defined by the Clarke directional deriva-

tive of the set-valued map F (t, ·), i.e., the so called circatangent variational inclusion

(3.4)

{

(p(t)w′(t))′ ∈ Cg(t)(F (t, ·))(y(t); w(t)) a.e. (I)

w(0) = u, w′(0) = v,
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Theorem 3.2. Consider the solution map S(·, ·) as a set valued map from X×X

into C(I, X) × L1(I, X) and assume that Hypothesis 2.1 is satisfied.

Then for any u, v ∈ X and any trajectory-selection pair (w, π) of the linearized

inclusion (3.4) one has

(w, π) ∈ C(y,g)S((y(0), y′(0); (u, v)).

P r o o f. Let u, v ∈ X , let (w, π) ∈ C(I, X) × L1(I, X) be a trajectory-selection

pair of (3.4), let (yn, gn) be a sequence of trajectory-selection pairs of (1.1) that

converges to (y, g) ∈ C(I, X) × L1(I, X) and let hn → 0+. Then there exists a

subsequence gj(·) := gnj
(·) such that

(3.5) lim
j→∞

gj(t) = g(t) a.e. (I).

Denote λj := hnj
. From (3.4) and from the definition of the Clarke directional

derivative, for almost all t ∈ I we have

(3.6) lim
j→∞

d
(

π(t),
F (t, yj(t) + λjw(t)) − gj(t)

λj

)

= 0.

Since gj(t) ∈ F (t, yj(t)) a.e. (I), for almost all t ∈ I, we get

d(gj(t) + λjπ(t), F (t, yj(t) + λjw(t))) 6 λj(|π(t)| + L(t)|w(t)|).

The last inequality together with the Lebesgue dominated convergence theorem

implies

(3.7)

∫ T

0

d(gj(t) + λjπ(t), F (t, yj(t) + λjw(t))) = o(λj),

where lim
j→∞

o(λj)/λj = 0.

We apply Theorem 2.1 with ε = λ2
j and by (3.7) we deduce the existence of

M > 0 and of trajectory-selections pairs (yj(·), gj(·)) of the second-order differential

inclusion (1.1) satisfying

|yj − yj − λjw|C + |gj − gj − λjπ|1 6 M(o(λj) + λ2
j),

yj(0) = y(0) + λju, y′

j(0) = y′(0) + λjv.

It follows that

lim
j→∞

yj − y

λj
= w in C(I, X),

lim
j→∞

gj − g

λj
= π in L1(I, X),

which completes the proof. �
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Finally, we consider the contingent variational inclusion

(3.8)

{

(p(t)w′(t))′ ∈ coKg(t)(F (t, ·))(y(t); w(t)) a.e. (I)

w(0) = u, w′(0) = v.

Theorem 3.3. Consider the solution map S(·, ·) as a set valued map from X×X

into C(I, X) × L∞(I, X), with L∞(I, X) supplied with the weak-* topology and

assume that Hypothesis 2.1 is satisfied.

Then for any u, v ∈ X one has

K(y,g)S((y(0), y′(0); (u, v)) ⊂ {(w, π); (w, π) is a trajectory-selection pair of (3.8)}.

P r o o f. Let u, v ∈ X and let (w, π) ∈ K(y,g)S((y(0), y′(0); (u, v)). According

to the definition of the contingent derivative there exist hn → 0+, un → u, vn → v,

wn(·) → w(·) in C(I, X), πn(·) → π(·) in the weak-* topology of L∞(I, X) and c > 0

such that

|πn(t)| 6 c a.e. (I),

g(t) + hnπn(t) ∈ F (t, y(t) + hnwn(t)) a.e. (I),(3.9)

wn(0) = un, w′

n(0) = vn.

Therefore,

(3.10) wn(·) converges pointwise to w(·),

πn(·) converges weakly in L1(I, X) to π(·).

We apply Mazur’s theorem (e.g., [4]) and find that there exists

vm(t) =

∞
∑

p=m

ap
mπp(t),

vm(·) → π(·) (strongly) in L1(I, X), where ap
m > 0,

∞
∑

p=m
ap

m = 1 and for any m,

ap
m 6= 0, for a finite number of p.

Therefore, a subsequence (again denoted) by vm(·) converges to π(·) a.e. From

(3.9) for any p and for almost all t ∈ I one obtains

w′

p(t) ∈
1

hp
(F (t, y(t) + hpwp(t)) − g(t)) ∩ cB.
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Let t ∈ I be such that vm(t) → π(t) and g(t) ∈ F (t, y(t)). Fix n > 1 and ε > 0.

By (3.9) there exists m such that hp 6 1/n and |wp(t)−w(t)| 6 1/n for any p > m.

If we denote

ϕ(z, h) :=
1

h
(F (t, y(t) + hz)− g(t)) ∩ cB

then

vm(t) ∈ co

(

⋃

h∈(0,1/n],
z∈B(w(t),1/n)

ϕ(z, h)

)

and if m → ∞, we get

π(t) ∈ co

(

⋃

h∈(0,1/n],
z∈B(w(t),1/n)

ϕ(z, h)

)

.

Since ϕ(z, h) ⊂ cB, we infer that

π(t) ∈ co
⋂

ε>0,n>1

(

⋃

h∈(0,1/n],
z∈B(w(t),1/n)

ϕ(z, h) + εB

)

.

On the other hand,

⋂

ε>0,n>1

(

⋃

h∈(0,1/n],
z∈B(w(t),1/n)

ϕ(z, h) + εB

)

⊂ Kg(t)F (t, ·)(y(t); w(t))

and the proof is complete. �
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