ON SOME SINGULAR SYSTEMS OF
 PARABOLIC FUNCTIONAL EQUATIONS

László Simon, Budapest

(Received October 15, 2009)

Abstract. We will prove existence of weak solutions of a system, containing non-local terms u, w.

Keywords: parabolic functional equation, singular system, monotone type operator MSC 2010: 35R10

1. Introduction

We will consider initial-boundary value problems for the system

$$
\begin{align*}
D_{t} u- & \sum_{i=1}^{n} D_{i}\left[a_{i}(t, x, u(t, x), D u(t, x)+g(w(t, x)) D w(t, x) ; u, w)\right] \tag{1.1}\\
& +a_{0}(t, x, u(t, x), D u(t, x)+g(w(t, x)) D w(t, x) ; u, w)=G
\end{align*}
$$

$$
\begin{equation*}
D_{t} w=F(t, x ; u, w) \text { in } Q_{T}=(0, T) \times \Omega \subset \mathbb{R}^{n+1}, T \in(0, \infty) \tag{1.2}
\end{equation*}
$$

where the functions

$$
a_{i}: Q_{T} \times \mathbb{R}^{n+1} \times L^{p_{1}}\left(0, T ; V_{1}\right) \times L^{2}\left(Q_{T}\right) \rightarrow \mathbb{R}
$$

(with a closed linear subspace V_{1} of the Sobolev space $W^{1, p_{1}}(\Omega), 2 \leqslant p_{1}<\infty$) satisfy conditions which are generalizations of the usual conditions for quasilinear parabolic differential equations considered when using the theory of monotone type operators. Further,

$$
F: Q_{T} \times L^{p_{1}}\left(0, T ; V_{1}\right) \times L^{2}\left(Q_{T}\right) \rightarrow \mathbb{R}
$$

This work was supported by the Hungarian National Foundation for Scienific Research under grant OTKA T 049819.
satisfies a Lipschitz condition. In the second part of the paper the case $g=0$ and in the third part the general case will be considered.

Such problems with $g=0$ arise, e.g., when considering diffusion and transport in porous media with variable porosity, see [4], [6]. In [6] a nonlinear system was numerically studied which consisted of a parabolic, an elliptic and an ordinary DE, describing the reaction-mineralogy-porosity changes in porous media. System (1.1), (1.2) is the case when the pressure is assumed to be constant. The case of general g was motivated by non-Fickian diffusion in viscoelastic polymers and by spread of morphogens (see [7], [8]). In [2], [5] similar degenerate systems of parabolic differential equations were considered without functional dependence and with more special differential equations, by using other methods.

2. CASE $g=0$

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain having the uniform C^{1} regularity property (see [1]) and let $p_{1} \geqslant 2$ be a real number. Denote by $W^{1, p_{1}}(\Omega)$ the usual Sobolev space of real valued functions with the norm

$$
\|u\|=\left[\int_{\Omega}\left(|D u|^{p_{1}}+|u|^{p_{1}}\right)\right]^{1 / p_{1}}
$$

Let $V_{1} \subset W^{1, p_{1}}(\Omega)$ be a closed linear subspace containing $C_{0}^{\infty}(\Omega)$. Denote by $L^{p_{1}}\left(0, T ; V_{1}\right)$ the Banach space of the set of measurable functions $u:(0, T) \rightarrow V_{1}$ such that $\|u\|_{V_{1}}^{p}$ is integrable, and define the norm by

$$
\|u\|_{L^{p_{1}\left(0, T ; V_{1}\right)}}^{p_{1_{1}}}=\int_{0}^{T}\|u(t)\|_{V_{1}}^{p_{1}} \mathrm{~d} t
$$

For the sake of brevity we denote $L^{p_{1}}\left(0, T ; V_{1}\right)$ by X_{1}^{T}. The dual space of X_{1}^{T} is $L^{q_{1}}\left(0, T ; V_{1}^{\star}\right)$ where $1 / p_{1}+1 / q_{1}=1$ and V_{1}^{\star} is the dual space of V_{1} (see, e.g., [10], [11]). Further, let $X^{T}=X_{1}^{T} \times L^{2}\left(Q_{T}\right)$.

On functions a_{i} we assume:
$\left(\mathrm{A}_{1}\right)$ The functions $a_{i}: Q_{T} \times \mathbb{R}^{n+1} \times X^{T} \rightarrow \mathbb{R}$ satisfy the Carathéodory conditions for arbitrary fixed $(u, w) \in X_{T}(i=0,1, \ldots, n)$.
$\left(\mathrm{A}_{2}\right)$ There exist bounded (nonlinear) operators $g_{1}: X^{T} \rightarrow \mathbb{R}^{+}$and $k_{1}: X^{T} \rightarrow$ $L^{q_{1}}\left(Q_{T}\right)$ such that

$$
\left|a_{i}\left(t, x, \zeta_{0}, \zeta ; u, w\right)\right| \leqslant g_{1}(u, w)\left[\left|\zeta_{0}\right|^{p_{1}-1}+|\zeta|^{p_{1}-1}\right]+\left[k_{1}(u, w)\right](t, x), \quad i=0,1, \ldots, n
$$

for a.e. $(t, x) \in Q_{T}$, every $\left(\zeta_{0}, \zeta\right) \in \mathbb{R}^{n+1}$ and $(u, w) \in X^{T}$.
$\left(\mathrm{A}_{3}\right)$

$$
\begin{gathered}
\sum_{i=1}^{n}\left[a_{i}\left(t, x, \zeta_{0}, \zeta ; u, w\right)-a_{i}\left(t, x, \zeta_{0}, \zeta^{\star} ; u, w\right)\right]\left(\zeta_{i}-\zeta_{i}^{\star}\right) \\
\geqslant\left[g_{2}(u)\right](t)\left|\zeta-\zeta^{\star}\right|^{p_{1}}, \quad t \in(0, T]
\end{gathered}
$$

where

$$
\begin{equation*}
\left[g_{2}(u)\right](t) \geqslant \frac{c_{2}}{1+\|u\|_{X_{1}^{t}}^{\sigma}} \tag{2.1}
\end{equation*}
$$

with some constants $c_{2}>0,0 \leqslant \sigma<p_{1}-1$.
$\left(\mathrm{A}_{4}\right)$ There exists a (nonlinear) operator $k_{2}: X^{T} \rightarrow L^{1}\left(Q_{T}\right)$ such that

$$
\sum_{i=0}^{n} a_{i}\left(t, x, \zeta_{0}, \zeta ; u, w\right) \zeta_{i} \geqslant\left[g_{2}(u)\right](t)\left[\left|\zeta_{0}\right|^{p_{1}}+|\zeta|^{p_{1}}\right]-\left[k_{2}(u, w)\right](t, x)
$$

for a.e. $(t, x) \in Q_{T}$, all $\left(\zeta_{0}, \zeta\right) \in \mathbb{R}^{n+1},(u, w) \in X^{T}$ and

$$
\begin{equation*}
\left\|k_{2}(u, w)\right\|_{L^{1}\left(Q_{T}\right)} \leqslant c_{3}\left[\|u\|^{\lambda}+\|w\|^{\mu}+1\right] \tag{2.2}
\end{equation*}
$$

with some nonnegative constants $\lambda<p_{1}-\sigma, \mu<2$.
$\left(\mathrm{A}_{5}\right)$ There exists $\delta \in(0,1]$ such that if $\left(u_{k}\right) \rightarrow u$ in $L^{p_{1}}\left(0, T ; W^{1-\delta, p_{1}}(\Omega)\right)$, a.e. in $Q_{T},\left(\zeta_{0}^{k}\right) \rightarrow \zeta_{0},\left(w_{k}\right) \rightarrow w$ weakly in $L^{2}\left(Q_{T}\right)$ then for $i=0,1, \ldots, n$, a.e. $(t, x) \in Q_{T}$, and all $\zeta \in \mathbb{R}^{n}$ we have

$$
a_{i}\left(t, x, \zeta_{0}^{k}, \zeta ; u_{k}, w_{k}\right)-a_{i}\left(t, x, \zeta_{0}, \zeta ; u_{k}, w\right) \rightarrow 0, k_{1}\left(u_{k}, w_{k}\right) \rightarrow k_{1}(u, w) \text { in } L^{1}\left(Q_{T}\right)
$$

(See $\left(\mathrm{A}_{1}\right)$.) Further, if conditions $\left(\zeta^{k}\right) \rightarrow \zeta,\left(w_{k}\right) \rightarrow w$ a.e. in Q_{T} are satisfied, too, then

$$
a_{i}\left(t, x, \zeta_{0}^{k}, \zeta^{k} ; u_{k}, w_{k}\right) \rightarrow a_{i}\left(t, x, \zeta_{0}, \zeta ; u, w\right), \quad i=1, \ldots, n
$$

for a.e. $(t, x) \in Q_{T}$ and

$$
a_{0}\left(t, x, \zeta_{0}^{k}, \zeta^{k} ; u_{k}, w_{k}\right) \rightarrow a_{0}\left(t, x, \zeta_{0}, \zeta ; u, w\right)
$$

for a.e. $(t, x) \in Q_{T}$, in the last case assuming also that $\left(D u_{k}\right) \rightarrow D u$ a.e. in Q_{T}.
Assumptions on $F: Q_{T} \times \mathbb{R} \times X^{T} \rightarrow \mathbb{R}$:
$\left(\mathrm{F}_{1}\right)$ For each fixed $(u, w) \in X^{T}, F(\cdot, u ; u, w) \in L^{2}\left(Q_{T}\right)$.
$\left(\mathrm{F}_{2}\right) F$ satisfies the following (global) Lipschitz condition: there exists a constant K such that for each $t \in(0, T],(u, \tilde{w}),\left(u, \tilde{w}^{\star}\right) \in X^{T}$ we have

$$
\begin{gather*}
\int_{Q_{t}} \mathrm{e}^{-2 c \tau}\left|F\left(\tau, x, \tilde{w}(\tau, x) \mathrm{e}^{c \tau} ; u, \tilde{w}^{c t}\right)-F\left(\tau, x, \tilde{w}^{\star}(\tau, x) \mathrm{e}^{c \tau} ; u, \tilde{w}^{\star} \mathrm{e}^{c t}\right)\right|^{2} \mathrm{~d} \tau \mathrm{~d} x \tag{2.3}\\
\leqslant K \int_{Q_{t}}\left|\tilde{w}(\tau, x)-\tilde{w}^{\star}(\tau, x)\right|^{2} \mathrm{~d} \tau \mathrm{~d} x
\end{gather*}
$$

for each positive number c. Further, there is a constant K_{0} such that

$$
\int_{Q_{T}}|F(t, x, 0 ; u, 0)|^{2} \mathrm{~d} t \mathrm{~d} x \leqslant K_{0}\left(\|u\|_{L^{p_{1}}\left(0, T ; W^{1-\delta, p_{1}}(\Omega)\right)}^{\lambda}+1\right) .
$$

$\left(\mathrm{F}_{3}\right)$ If $\left(u_{k}\right) \rightarrow u$ in $L^{p_{1}}\left(0, T ; W^{1-\delta, p_{1}}(\Omega)\right)$, a.e. in $Q_{T},\left(\eta_{k}\right) \rightarrow \eta$ and $\left(w_{k}\right) \rightarrow w$ in $L^{2}\left(Q_{T}\right)$, a.e. in Q_{T}, then for a.e. $(t, x) \in Q_{T}$

$$
F\left(t, x, \eta_{k} ; u_{k}, w_{k}\right) \rightarrow F(t, x, \eta ; u, w)
$$

Remark. A sufficient condition for (2.3) to hold is the following inequality:

$$
\begin{aligned}
& \int_{\Omega}\left|F(\tau, x, w(\tau, x) ; u, w)-F\left(\tau, x, w^{\star}(\tau, x) ; u, w^{\star}\right)\right|^{2} \mathrm{~d} x \\
& \leqslant K_{1} \int_{Q_{\tau}}\left|w(s, x)-w^{\star}(s, x)\right|^{2} \mathrm{~d} s \mathrm{~d} x \\
& \quad+K_{2} \int_{\Omega}\left|w(\gamma(\tau), x)-w^{\star}(\gamma(\tau), x)\right|^{2} \mathrm{~d} x, \tau \in(0, T)
\end{aligned}
$$

with some constants K_{1}, K_{2} and a function $\gamma \in C^{1}$ satisfying $\gamma^{\prime}>0,0 \leqslant \gamma(\tau) \leqslant \tau$.
Definition. We define an operator $A=\left(A_{1}, A_{2}\right): X^{T} \rightarrow\left(X^{T}\right)^{\star}$ by

$$
\begin{aligned}
{[A(u, w),(v, z)]=} & {\left[A_{1}(u, w), v\right]+\left[A_{2}(u, w), z\right] } \\
{\left[A_{1}(u, w), v\right]=} & \int_{Q_{T}} \sum_{i=1}^{n} a_{i}(t, x, u(t, x), D u(t, x) ; u, w) D_{i} v \mathrm{~d} t \mathrm{~d} x \\
& +\int_{Q_{T}} a_{0}(t, x, u(t, x), D u(t, x) ; u, w) v \mathrm{~d} t \mathrm{~d} x \\
{\left[A_{2}(u, w), z\right]=} & \int_{Q_{T}} F(t, x, w(t, x) ; u, w) z \mathrm{~d} t \mathrm{~d} x
\end{aligned}
$$

$(u, w),(v, z) \in X^{T}$, where the brackets $[\cdot, \cdot]$ mean the dualities in spaces $\left(X^{T}\right)^{\star}, X^{T}$, $\left(X_{1}^{T}\right)^{\star}, X_{1}^{T},\left[L^{2}\left(Q_{T}\right)\right]^{\star},\left[L^{2}\left(Q_{T}\right)\right]$, respectively.

Theorem 2.1. Assume $\left(\mathrm{A}_{1}\right)-\left(\mathrm{A}_{5}\right)$ and $\left(\mathrm{F}_{1}\right)-\left(\mathrm{F}_{3}\right)$. Then for any $G \in\left(X_{1}^{T}\right)^{\star}$, $H \in L^{2}\left(Q_{T}\right)$ there exists $(u, w) \in X^{T}$ such that $D_{t} u \in\left(X_{1}^{T}\right)^{\star}, D_{t} w \in L^{2}\left(Q_{T}\right)$,

$$
\begin{array}{cc}
D_{t} u+A_{1}(u, w)=G, & u(0)=0 \\
D_{t} w+A_{2}(u, w)=H, & w(0)=0 \tag{2.5}
\end{array}
$$

Sketch of the proof. Define a new unknown function $\tilde{w}(\operatorname{instead}$ of $w)$ by

$$
\tilde{w}(t, x)=w(t, x) \mathrm{e}^{-c t}, \text { i.e. } w(t, x)=\tilde{w}(t, x) \mathrm{e}^{c t}
$$

with constant $c>0$. Further, define a function \widetilde{F} and operators $\widetilde{A}_{1}, \widetilde{A}_{2}$ by

$$
\begin{aligned}
\widetilde{F}(t, x, \eta ; u, \tilde{w})= & \mathrm{e}^{-c t} F\left(t, x, \eta \mathrm{e}^{c t} ; u, \tilde{w} \mathrm{e}^{c t}\right)+c \eta \\
{\left[\widetilde{A}_{1}(u, \tilde{w}), v\right]=} & {\left[A_{1}(u, w), v\right]=\int_{Q_{T}} \sum_{i=1}^{n} a_{i}(t, x, u(t, x), D u(t, x) ; u, w) D_{i} v \mathrm{~d} t \mathrm{~d} x } \\
& +\int_{Q_{T}} a_{0}(t, x, u(t, x), D u(t, x) ; u, w) v \mathrm{~d} t \mathrm{~d} x \\
{\left[\widetilde{A}_{2}(u, \tilde{w}), z\right]=} & \int_{Q_{T}} \widetilde{F}(t, x, \tilde{w}(t, x) ; u, \tilde{w}) z \mathrm{~d} t \mathrm{~d} x \\
= & \int_{Q_{T}} \mathrm{e}^{-c t} F\left(t, x, \tilde{w}(t, x) \mathrm{e}^{c t} ; u, \tilde{w} \mathrm{e}^{c t}\right) z \mathrm{~d} t \mathrm{~d} x+c \int_{Q_{T}} \tilde{w} z \mathrm{~d} t \mathrm{~d} x
\end{aligned}
$$

Clearly, (u, w) is a solution of $(2.4),(2.5)$ if and only if (u, \tilde{w}) satisfies

$$
\begin{gather*}
D_{t} u+\widetilde{A}_{1}(u, \tilde{w})=G, \quad u(0)=0, \tag{2.6}\\
D_{t} \tilde{w}+\widetilde{A}_{2}(u, \tilde{w})=\mathrm{e}^{-c t} H=\widetilde{H}, \quad \tilde{w}(0)=0 . \tag{2.7}
\end{gather*}
$$

By $\left(\mathrm{A}_{1}\right)-\left(\mathrm{A}_{5}\right),\left(\mathrm{F}_{1}\right),\left(\mathrm{F}_{2}\right)$ the operator $\widetilde{A}: X^{T} \rightarrow\left(X^{T}\right)^{\star}$ is bounded and demicontinuous (see [10], [11]).

By $\left(\mathrm{F}_{2}\right), \widetilde{A}_{2}$ is monotone for sufficiently large $\left.c>0\right)$, thus, by using $\left(\mathrm{A}_{1}\right)-\left(\mathrm{A}_{5}\right)$, one can show that \widetilde{A} is pseudomonotone with respect to the domain of $L=D_{t}$:

$$
D(L)=\left\{(u, \tilde{w}) \in X^{T}:\left(D_{t} u, D_{t} \tilde{w}\right) \in\left(X^{T}\right)^{\star}, \quad u(0)=0, \quad \tilde{w}(0)=0\right\}
$$

i.e.

$$
\begin{align*}
\left(u_{k}, \tilde{w}_{k}\right) & \rightarrow(u, \tilde{w}) \text { weakly in } X^{T}, \tag{2.8}\\
\left(L u_{k}, L \tilde{w}_{k}\right) & \rightarrow(L u, L \tilde{w}) \text { weakly in }\left(X^{T}\right)^{\star},
\end{align*}
$$

and

$$
\begin{equation*}
\limsup _{k \rightarrow \infty}\left[\widetilde{A}\left(u_{k}, \tilde{w}_{k}\right),\left(u_{k}, \tilde{w}_{k}\right)-(u, \tilde{w})\right] \leqslant 0 \tag{2.9}
\end{equation*}
$$

imply

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left[\widetilde{A}\left(u_{k}, \tilde{w}_{k}\right),\left(u_{k}, \tilde{w}_{k}\right)-(u, \tilde{w})\right]=0 \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\widetilde{A}\left(u_{k}, \tilde{w}_{k}\right) \rightarrow \widetilde{A}(u, \tilde{w}) \text { weakly in }\left(X^{T}\right)^{\star} . \tag{2.11}
\end{equation*}
$$

Because, by (2.8)

$$
\begin{equation*}
\left(u_{k}\right) \rightarrow u \quad \text { in } L^{p}\left(0, T ; W^{1-\delta, p}(\Omega)\right) \text { and a.e. in } Q_{T} \tag{2.12}
\end{equation*}
$$

for a subsequence (again denoted by $\left(u_{k}\right)$, for simplicity), see, e.g., [10]. We may choose the number $c>0$ such that $c>K\left(\right.$ see $\left.\left(\mathrm{F}_{2}\right)\right)$. We have

$$
\begin{align*}
{\left[\widetilde{A}_{2}\left(u_{k}, \tilde{w}_{k}\right), \tilde{w}_{k}-\tilde{w}\right]=} & {\left[\widetilde{A}_{2}\left(u_{k}, \tilde{w}_{k}\right)-\widetilde{A}_{2}\left(u_{k}, \tilde{w}\right), \tilde{w}_{k}-\tilde{w}\right] } \tag{2.13}\\
& +\left[\widetilde{A}_{2}\left(u_{k}, \tilde{w}\right)-\widetilde{A}_{2}(u, \tilde{w}), \tilde{w}_{k}-\tilde{w}\right]+\left[\widetilde{A}_{2}(u, \tilde{w}), \tilde{w}_{k}-\tilde{w}\right]
\end{align*}
$$

where by $c>K$, $\left(\mathrm{F}_{2}\right)$ the first term on the right hand side is nonnegative, the second term tends to 0 by (2.12), (F_{2}), (F_{3}), Vitali's theorem, and Cauchy-Schwarz inequality, while, finally, the third term converges to 0 by (2.8). Thus (2.9), (2.13) imply (for a subsequence)

$$
\begin{equation*}
\limsup _{k \rightarrow \infty}\left[\widetilde{A}_{1}\left(u_{k}, \tilde{w}_{k}\right), u_{k}-u\right] \leqslant 0 \tag{2.14}
\end{equation*}
$$

By using $\left(\mathrm{A}_{2}\right),\left(\mathrm{A}_{3}\right),\left(\mathrm{A}_{5}\right)$, Vitali's theorem and Hölder's inequality, one obtains from (2.8), (2.14)

$$
\begin{equation*}
\left.\lim _{k \rightarrow \infty}\left[\widetilde{A}_{1}\left(u_{k}, \tilde{w}_{k}\right), u_{k}-u\right)\right]=0 \tag{2.15}
\end{equation*}
$$

hence by $\left(\mathrm{A}_{3}\right)$ one obtains for a subsequence

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{Q_{T}}\left|D u_{k}-D u\right|^{p_{1}} \mathrm{~d} t \mathrm{~d} x=0, \text { thus }\left(D u_{k}\right) \rightarrow D u \text { a.e. in } Q_{T} \text {. } \tag{2.16}
\end{equation*}
$$

Further, by (2.15), (2.9), (2.13)

$$
\begin{equation*}
\left.\lim _{k \rightarrow \infty}\left[\widetilde{A}_{2}\left(u_{k}, \tilde{w}_{k}\right), \tilde{w}_{k}-\tilde{w}\right)\right]=0 \tag{2.17}
\end{equation*}
$$

thus by assumption $\left(\mathrm{F}_{2}\right)$ and due to $c>K$ (for a subsequence)

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{Q_{T}}\left|\tilde{w}_{k}-\tilde{w}\right|^{2} \mathrm{~d} t \mathrm{~d} x \text { and so }\left(\tilde{w}_{k}\right) \rightarrow \tilde{w} \text { a.e. in } Q_{T} \tag{2.18}
\end{equation*}
$$

Consequently, from (A_{5}), (2.12), (2.16) one obtains (by using Vitali's theorem)

$$
\begin{equation*}
\widetilde{A}_{1}\left(u_{k}, \tilde{w}_{k}\right) \rightarrow \widetilde{A}_{1}(u, \tilde{w}) \text { weakly in } L^{q}\left(0, T ; V_{1}^{\star}\right) \tag{2.19}
\end{equation*}
$$

Similarly, (2.18), (F_{2}), (F_{3}) imply

$$
\begin{equation*}
\widetilde{A}_{2}\left(u_{k}, \tilde{w}_{k}\right) \rightarrow \widetilde{A}_{2}(u, \tilde{w}) \quad \text { weakly in } L^{2}\left(Q_{T}\right) \tag{2.20}
\end{equation*}
$$

Thus (2.19), (2.20) imply (2.11) for a subsequence. Finally, (2.15), (2.17) imply (2.10) (for a subsequence). One can prove in the standard way that the last facts imply (2.10), (2.11) for the original sequence.

Finally, by $\left(\mathrm{A}_{4}\right),\left(\mathrm{F}_{2}\right)$ (for sufficiently large $c>0$), \widetilde{A} is coercive:

$$
\lim _{\|(u, \tilde{w})\|_{X^{T}} \rightarrow \infty} \frac{[\widetilde{A}(u, \tilde{w}),(u, \tilde{w})]}{\|u\|+\|\tilde{w}\|}=+\infty .
$$

Since $\widetilde{A}: X^{T} \rightarrow\left(X^{T}\right)^{\star}$ is bounded, demicontinuous, pseudomonotone with respect to $D(L)$ and coercive, we obtain the existence of a solution (u, \tilde{w}) of (2.6), (2.7) and thus the existence of a solution (u, w) of (2.4), (2.5). (See, e.g. [3], [10].)

Example. Conditions $\left(\mathrm{A}_{1}\right)-\left(\mathrm{A}_{5}\right)$ are satisfied if e.g.

$$
\begin{aligned}
a_{i}\left(t, x, \zeta_{i}, \zeta ; u, w\right) & =b(H(u)) \zeta_{i} \mid \zeta^{p_{1}-2}, \quad i=1,2, \ldots, n \\
a_{0}\left(t, x, \zeta_{i}, \zeta ; u, w\right) & =b(H(u)) \zeta_{0}\left|\zeta_{0}\right|^{p_{1}-2}+b_{0}\left(F_{0}(u)\right)+b_{1}\left(F_{1}(w)\right)
\end{aligned}
$$

where b, b_{0}, b_{1} are continuous functions satisfying with some positive constants c_{3}, c_{4}, c_{5} the inequalities

$$
\begin{aligned}
b(\theta) & \geqslant \frac{c_{3}}{1+|\theta|^{\sigma}} \quad\left(0 \leqslant \sigma<p_{1}-1\right), \\
\left|b_{0}(\theta)\right| & \leqslant c_{4}\left(|\theta|^{\lambda-1}+1\right) \text { where } 1 \leqslant \lambda<p_{1}-\sigma, \\
\left|b_{1}(\theta)\right| & \leqslant c_{5}\left(|\theta|^{\mu_{1}-1}+1\right) \text { where } 0 \leqslant \mu_{1}<2-2 / p_{1}
\end{aligned}
$$

and

$$
\begin{aligned}
& H: L^{p_{1}}\left(0, T ; W^{1-\delta, p_{1}}(\Omega)\right) \\
& F_{0}:\left.L^{p_{1}}\left(0, T ; W^{1-\delta, p_{1}}(\Omega)\right) \rightarrow L^{p_{1}}\right), \\
&\left.Q_{T}\right), \quad F_{1}: L^{2}\left(Q_{T}\right) \rightarrow \mathbb{R}
\end{aligned}
$$

are linear continuous operators. If b is between two positive constants, H may be the same as F_{0}.

Conditions $\left(\mathrm{F}_{1}\right)-\left(\mathrm{F}_{3}\right)$ are satisfied if e.g.

$$
F(t, x, \eta ; u, w)=\beta(\eta) \gamma_{1}\left(H_{1}(u)\right)+\gamma_{2}\left(H_{2}(u)\right) \delta(G(w))+\gamma_{3}\left(H_{3}(u)\right)
$$

where β, δ are globally Lipschitz functions, γ_{1}, γ_{2} are continuous and bounded, γ_{3} is continuous and satisfies

$$
\left|\gamma_{3}(\theta)\right| \leqslant c_{5}|\theta|^{\lambda / 2}+c_{6}
$$

with some constants c_{5}, c_{6}, and

$$
\begin{gathered}
G: L^{2}\left(Q_{T}\right) \rightarrow L^{2}\left(Q_{T}\right), \quad H_{1}, H_{2}: L^{p_{1}}\left(0, T ; W^{1-\delta, p_{1}}(\Omega)\right) \rightarrow L^{p_{1}}\left(Q_{T}\right), \\
H_{3}: L^{p_{1}}\left(0, T ; W^{1-\delta, p_{1}}(\Omega)\right) \rightarrow L^{2}\left(Q_{T}\right)
\end{gathered}
$$

are continuous linear operators such that G satisfies for all $w \in L^{2}\left(Q_{T}\right)$

$$
\int_{\Omega}|[G(w)](\tau, x)|^{2} \mathrm{~d} x \leqslant K_{1} \int_{Q_{\tau}}|w(s, x)|^{2} \mathrm{~d} s \mathrm{~d} x+K_{2} \int_{\Omega}|w(\gamma(s), x)|^{2} \mathrm{~d} x
$$

where $\gamma \in C^{1}, \gamma^{\prime}>0, \gamma(s) \leqslant s$.

3. CASE $g \neq 0$

Now we shall consider equations (1.1), (1.2) with a bounded, continuous function g. This problem will be transformed to the case $g=0$, considered in Theorem 2.1. Let $f=\int g, f(0)=0, p_{1}=p>2$.

Define

$$
\widetilde{X}^{T}=L^{p}\left(0, T ; W^{1, p}(\Omega)\right) \times L^{p}\left(0, T ; W^{1, p}(\Omega)\right)
$$

and an operator $A_{1}: \widetilde{X}_{T} \rightarrow\left(X_{1}^{T}\right)^{\star}$ for $(u, w) \in \widetilde{X}^{T}, v \in X_{1}^{T}$ by

$$
\begin{aligned}
{\left[A_{1}(u, w), v\right]=} & \int_{Q_{T}}\left\{\sum_{i=1}^{n} a_{i}(t, x, u, D u+g(w) D w ; u, w) D_{i} v\right\} \mathrm{d} t \mathrm{~d} x \\
& +\int_{Q_{T}} a_{0}(t, x, u(t, x), D u(t, x)+g(w(t, x)) D w(t, x) ; u, w) v \mathrm{~d} t \mathrm{~d} x
\end{aligned}
$$

Further, assume
$\left(\mathrm{F}_{4}\right) F$ has the form $F(t, x ; u, w)=F_{1}(t, x,[h(u)](t, x), w(t, x))$ where F_{1} is continuously differentiable with respect to the last three variables, the partial derivatives are bounded and either $h(u)=u$ or $h: L^{p}\left(Q_{T}\right) \rightarrow L^{p}\left(0, T ; W^{1, p}(\Omega)\right)$ is a continuous linear operator such that $h(u) \in L^{p}\left(0, T ; C^{1}(\bar{\Omega})\right)$ for all $u \in L^{p}\left(Q_{T}\right)$ and the following estimate holds for any $\tau \in[0, T]$ with a suitable constant:

$$
\int_{\Omega}|[h(u)](\tau, x)|^{2} \mathrm{~d} x \leqslant \text { const } \int_{Q_{\tau}}|u(s, x)|^{2} \mathrm{~d} s \mathrm{~d} x .
$$

Further, there exists a constant $c_{0}>0$ such that

$$
F_{1}\left(t, x, \zeta_{0}, \eta\right) \eta<0 \quad \text { if }|\eta| \geqslant c_{0}
$$

Theorem 3.1. Assume that $\left(\mathrm{A}_{1}\right)-\left(\mathrm{A}_{5}\right)$ and $\left(\mathrm{F}_{1}\right)-\left(\mathrm{F}_{4}\right)$ are satisfied with $p_{1}=p>$ $2, \delta=1, \sigma<p-2$ such that for the operators $g_{1}, k_{1}, g_{2}, k_{2}$ in $\left(\mathrm{A}_{2}\right)-\left(\mathrm{A}_{4}\right)$ we have

$$
g_{1}(u, w)^{q} \leqslant \text { const } g_{2}(u, w), \quad k_{1}(u, w)^{q} \leqslant \text { const } k_{2}(u, w) \text { if } w(t, x) \leqslant c_{0} \text { a.e. }
$$

Further, let g be a bounded, continuous function. Then for any $G \in\left(X_{1}^{T}\right)^{\star}$ there exists $(u, w) \in \widetilde{X}^{T}$ such that $u+f(w) \in L^{p}\left(0, T ; V_{1}\right)$,

$$
\begin{gather*}
D_{t} u+D_{t}[f(w)] \in\left(X_{1}^{T}\right)^{\star}, \quad D_{t} w \in L^{2}\left(Q_{T}\right), \\
D_{t} u+A_{1}(u, w)=G, \quad u(0)=0, \tag{3.1}\\
D_{t} w=F(t, x ; u, w) \quad \text { for a.e. }(t, x) \in Q_{T}, w(0)=w . \tag{3.2}
\end{gather*}
$$

Sketch of the proof. Instead of u introduce a new unknown function \tilde{u} by

$$
\begin{equation*}
\tilde{u}(t, x)=u(t, x)+f(w(t, x)) \quad\left(\text { where } f=\int g, f(0)=0\right) \tag{3.3}
\end{equation*}
$$

By using the formulas

$$
\begin{equation*}
D_{t} \tilde{u}=D_{t} u+f^{\prime}(w) D_{t} w, \quad D \tilde{u}=D u+f^{\prime}(w) D w \tag{3.4}
\end{equation*}
$$

we obtain that $(u, w) \in \widetilde{X}^{T}$ is a solution of (3.1), (3.2) if and only if $(\tilde{u}, w) \in \widetilde{X}^{T}$ satisfies

$$
\begin{gather*}
D_{t} \tilde{u}+\widetilde{A}_{1}(\tilde{u}, w)=G, \quad \tilde{u}(0)=0, \tag{3.5}\\
D_{t} w=F(t, x ; \tilde{u}-f(w), w), \quad w(0)=0 \tag{3.6}
\end{gather*}
$$

where

$$
\begin{aligned}
& {\left[\widetilde{A}_{1}(\tilde{u}, w), v\right] } \\
&= \int_{Q_{T}}\left\{\sum_{i=1}^{n} a_{i}(t, x, \tilde{u}(t, x)-f(w(t, x)), D \tilde{u}(t, x) ; \tilde{u}-f(w), w) D_{i} v\right\} \mathrm{d} t \mathrm{~d} x \\
&+\int_{Q_{T}}\left\{a_{0}(t, x, \tilde{u}-f(w), D \tilde{u} ; \tilde{u}-f(w), w)-f^{\prime}(w) F(t, x ; \tilde{u}-f(w), w)\right\} v \mathrm{~d} t \mathrm{~d} x .
\end{aligned}
$$

One can show that by Theorem 2.1 there is a solution $(\tilde{u}, w) \in X^{T}$ of (3.5), (3.6) (such that $D_{t} w \in L^{2}\left(Q_{T}\right)$). Then one proves that $w \in L^{p}\left(0, T ; W^{1, p}(\Omega)\right.$), hence $(\tilde{u}, w) \in \widetilde{X}^{T}$ and thus with $u=\tilde{u}-f(w),(u, w)$ satisfies (3.1), (3.2).

References

[1] R. A. Adams: Sobolev Spaces. Academic Press, New York, 1975.
Zbl
[2] H. Amann: Highly degenerate quasilinear parabolic systems. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 18 (1991), 136-166.
[3] J. Berkovits, V. Mustonen: Topological degreee for perturbations of linear maximal monotone mappings and applications to a class of parabolic problems. Rend. Mat. Appl. VII. 12 (1992), 597-621.
[4] S. Cinca: Diffusion und Transport in porösen Medien bei veränderlichen Porosität. Diplomawork, Univ. Heidelberg, 2000.
[5] Bei Hu, Jianhua Zhang: Global existence for a class of non-Fickian polymer-penetrant systems. J. Part. Diff. Eq. 9 (1996), 193-208.
[6] J. D. Logan, M. R. Petersen, T.S. Shores: Numerical study of reaction-mineralogy-porosity changes in porous media. Appl. Math. Comput. 127 (2002), 149-164.
[7] J. H. Merkin, D. J. Needham, B.D.Sleeman: A mathematical model for the spread of morphogens with density dependent chemosensitivity. Nonlinearity 18 (2005), 2745-2773.
[8] B. Rivière,S.Shaw: Discontinuous Galerkin finite element approximation of nonlinear non-Fickian diffusion in viscoelastic polymers. SIAM J. Numer. Anal. 44 (2006), 2650-2670.
[9] L. Simon, W. Jäger: On non-uniformly parabolic functional differential equations. Stud. Sci. Math. Hung. 45 (2008), 285-300.
[10] L. Simon: Application of monotone type operators to parabolic and functional parabolic PDE's. Handbook of Differential Equations. Evolutionary Equations, Vol. 4, Elsevier, 2008, pp. 267-321.
[11] E. Zeidler: Nonlinear Functional Analysis and Its Applications II A and II B. Springer, 1990.

Author's address: László Simon, L. Eötvös University, Budapest, Hungary, 1111 Pázmány P. sétány $1 / C$, e-mail: simonl@ludens.elte.hu.

