Photosynthetica, 2019 (vol. 57), issue 1

Photosynthetica 2019, 57(1):61-74 | DOI: 10.32615/ps.2019.028

Photosystem photochemistry, prompt and delayed fluorescence, photosynthetic responses and electron flow in tobacco under drought and salt stress

K. KHATRI1,2, M.S. RATHORE1,2
1 Biotechnology and Phycology Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar (Gujarat- 364001), India
2 Academy of Scientific and Innovative Research, CSIR, New Delhi, India

The present study aimed to understand the photosynthetic responses and chlorophyll fluorescence transient in tobacco under drought and salt stress. Net CO2 assimilation rate, stomatal conductance, intercellular CO2 concentration and transpiration rate decreased significantly under drought and salt stress. The maximum quantum efficiency of PSII and electron transport rate were lower in tobacco under drought and salt stress. The maximum carboxylation rate, maximum electron transport rate, triosephosphate utilization efficiency, and mesophyll conductance decreased under drought and salt stress, while dark respiration increased. A pool size of the electron acceptors on reducing side of PSII and activity of water-splitting complex on the donor side of the PSII decreased during drought and salt stress. Present results suggested upregulation of the photorespiratory pathway as a strategy to maintain the ribulose-1,5-bisphosphate regeneration for maintenance of photosynthesis under drought and salt stress. Chlorophyll fluorescence indicated the impaired electron transfer and changes in the architecture of light-harvesting complex in tobacco leaves under drought and salt stress.

Keywords: multisignal fluorescence; nonphotochemical quenching; photochemistry; photosynthetic performance; photorespiration.

Received: June 16, 2017; Accepted: July 20, 2018; Prepublished online: December 7, 2018; Published: January 30, 2019Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
KHATRI, K., & RATHORE, M.S. (2019). Photosystem photochemistry, prompt and delayed fluorescence, photosynthetic responses and electron flow in tobacco under drought and salt stress. Photosynthetica57(1), 61-74. doi: 10.32615/ps.2019.028.
Download citation

Supplementary files

Download file1730 Table 2S.docx

File size: 13.86 kB

Download file1730 Table 3S.docx

File size: 30.25 kB

Download file1730 Figure 2S.jpg

File size: 637.02 kB

Download file1730 Figure 1S.jpg

File size: 495.19 kB

Download file1730 Table 1S.docx

File size: 20.83 kB

References

  1. Ahmad S., Wahid A., Rasul E.: Comparative morphological and physiological responses of green gram genotypes to salinity applied at different growth stages. - Bot. Bull. Acad. Sin. 46: 135-142, 2005.
  2. Ashraf M., Harris P.J.C.: Photosynthesis under stressful environments: an overview. - Photosynthetica 51: 163-190, 2013. Go to original source...
  3. Bussotti F., Desotgiu R., Cascio C. et al.: Ozone stress in woody plants assessed with chlorophyll a fluorescence. A critical reassessment of existing data. - Environ. Exp. Bot. 73: 19-30, 2011. Go to original source...
  4. Centritto M., Loreto F., Chartzoulakis K.: The use of low [CO2] to estimate diffusional and non-diffusional limitations of photosynthetic capacity of salt- stressed olive saplings. - Plant Cell Environ. 26: 585-594, 2003. Go to original source...
  5. Chamovitz D., Sandmann G., Hirschberg J.: Molecular and biochemical characterization of herbicide-resistant mutants of cyanobacteria reveals that phytoene desaturation is a rate-limiting step in carotenoid biosynthesis. - J. Biol. Chem. 268: 17348-17353, 1993.
  6. Choinski Jr J.S., Ralph P., Eamus D.: Changes in photosynthesis during leaf expansion in Corymbia gummifera - Aust. J. Bot. 51: 111-118, 2003. Go to original source...
  7. Dąbrowski P., Baczewska A.H., Pawluśkiewicz B. et al.: Prompt chlorophyll a fluorescence as a rapid tool for diagnostic changes in PSII structure inhibited by salt stress in Perennial ryegrass. - J. Photoch. Photobio. B 157: 22-31, 2016. Go to original source...
  8. Debez A., Koyro H.W., Grignon C. et al.: Relationship between the photosynthetic activity and the performance of Cakile maritima after long-term salt treatment. - Physiol. Plantarum 133: 373-385, 2008. Go to original source...
  9. Demetriou G., Neonaki C., Navakoudis E. et al.: Salt stress impact on the molecular structure and function of the photosynthetic apparatus-the protective role of polyamines. - BBA-Bioenergetics 1767: 272-280, 2007. Go to original source...
  10. Dionisio-Sese M.L., Tobita S.: Effects of salinity on sodium content and photosynthetic responses of rice seedlings differing in salt tolerance. - J. Plant Physiol. 157: 54-58, 2000. Go to original source...
  11. Driever S.M., Baker N.R.: The water-water cycle in leaves is not a major alternative electron sink for dissipation of excess excitation energy when CO2 assimilation is restricted. - Plant Cell Environ. 34: 837-846, 2011. Go to original source...
  12. Evans E.H., Crofts, A.R.: The relationship between delayed fluorescence and the H+ gradient in chloroplasts. - BBA-Bioenergetics 292: 130-139, 1973. Go to original source...
  13. Flexas J., Bota J., Loreto F. et al.: Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. - Plant Biol. 6: 269-279, 2004. Go to original source...
  14. Foyer C.H., Ferrario-Méry S., Huber S.C.: Regulation of carbon fluxes in the cytosol: coordination of sucrose synthesis, nitrate reduction and organic acid and amino acid biosynthesis. - In: Leegood R.C., Sharkey T.D., von Caemmerer S. (ed.): Photosynthesis. Advences in Photosynthesis and Respiration. Pp. 177-203. Springer, Dordrecht 2000. Go to original source...
  15. Fusaro L., Gerosa G., Salvatori E. et al.: Early and late adjustments of the photosynthetic traits and stomatal density in Quercus ilex L. grown in an ozone-enriched environment. - Plant Biol. 18: 13-21, 2016. Go to original source...
  16. Gao J., Li P.M., Ma F.W., et al.: Photosynthetic performance during leaf expansion in Malus micromalus probed by chlorophyll a fluorescence and modulated 820 nm reflection. - J. Photoch. Photobio. B 137: 144-150, 2014. Go to original source...
  17. Goltsev V., Chernev P., Zaharieva I. et al.: Kinetics of delayed chlorophyll a fluorescence registered in milliseconds time range. - Photosynth. Res. 84: 209-215, 2005. Go to original source...
  18. Goltsev V., Zaharieva I., Chernev P. et al.: Delayed fluorescence in photosynthesis. - Photosynth. Res. 101: 217-232, 2009. Go to original source...
  19. Goltsev V., Zaharieva I., Chernev P. et al.: Drought-induced modifications of photosynthetic electron transport in intact leaves: analysis and use of neural networks as a tool for a rapid non-invasive estimation. - BBA-Bioenergetics 1817: 1490-1498, 2012.
  20. Govindjee: Sixty-three years since kautsky: chlorophylla fluorescence. - Aust. J. Plant Physiol. 22: 131-160, 1995. Go to original source...
  21. Haque Md. I., Rathore Mangal S., Gupta H. et al.: Inorganic solutes contribute more than organic solutes to the osmotic adjustment in Salicornia brachiata (Roxb.) under natural saline conditions. - Aquat. Bot. 142: 78-86, 2017. Go to original source...
  22. Huang W., Zhang S.B., Hu H.: Sun leaves up-regulate the photorespiratory pathway to maintain a high rate of CO2 assimilation in tobacco. - Front. Plant Sci. 5: 688, 2014. Go to original source...
  23. Inskeep W.P., Bloom P.R.: Extinction coefficients of chlorophyll a and b in N,N-dimethylformamide and 80% acetone. - Plant Physiol. 77: 483-485, 1985. Go to original source...
  24. Jafarinia M., Shariati M.: Effects of salt stress on photosystem II of canola plant (Brassica napus, L.) probing by chlorophyll a fluorescence measurements. - Iran. J. Sci. Technol. 36: 71, 2012.
  25. Kalaji H.M., Govindjee, Bosa K. et al.: Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. - Environ. Exp. Bot. 73: 64-72, 2011. Go to original source...
  26. Kalaji H.M., Goltsev V., Bosa K. et al.: Experimental in vivo measurements of light emission in plants: a perspective dedicated to David Walker. - Photosynth. Res. 114: 69-96, 2012. Go to original source...
  27. Kalaji H.M., Jajoo A., Oukarroum A. et al.: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. - Acta Physiol. Plant. 38: 102, 2016. Go to original source...
  28. Kalaji H.M., Schansker G., Ladle R.J. et al.: Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. - Photosynth. Res. 122: 121-158, 2014. Go to original source...
  29. Kan X., Ren J.J., Chen T.T. et al.: Effects of salinity on photosynthesis in maize probed by prompt fluorescence, delayed fluorescence and P700 signals. - Environ. Exp. Bot. 140: 56-64, 2017. Go to original source...
  30. Krasteva V., Alexandrov V., Chepisheva M. et al.: Drought induced damages of photosynthesis in bean and plantain plants analyzed in vivo by chlorophyll a fluorescence. - Bulg. J. Plant Physiol. 19: 39-44, 2013.
  31. Krüger G.H.J., De Villiers M.F., Strauss A.J. et al.: Inhibition of photosystem II activities in soybean (Glycine max) genotypes differing in chilling sensitivity. - S. Afr. J. Bot. 95: 85-96, 2014. Go to original source...
  32. Kumari J., Udawat P., Dubey A.K. et al.: Overexpression of SbSI-1, a nuclear protein from Salicornia brachiata confers drought and salt stress tolerance in tobacco by curtailing oxidative damage and maintaining photosynthetic efficiency. - Front. Plant Sci. 8: 1215, 2017. Go to original source...
  33. Lawlor D.W.: Limitation to photosynthesis in water-stressed leaves: stomata vs. metabolism and the role of ATP. - Ann. Bot.-London 89: 871-885, 2002. Go to original source...
  34. Lazár D.: Parameters of photosynthetic energy partitioning. - J. Plant Physiol. 175: 131-147, 2015. Go to original source...
  35. Lee B.R., Zaman R., Avice J.C. et al.: Sulfur use efficiency is a significant determinant of drought stress tolerance in relation to photosynthetic activity in Brassica napus cultivars. - Front. Plant Sci. 7: 459, 2016. Go to original source...
  36. Loreto F., Centritto M., Chartzoulakis K.: Photosynthetic limitations in olive cultivars with different sensitivity to salt stress. - Plant Cell Environ. 26: 595-601, 2003. Go to original source...
  37. Maroco J.P., Rodrigues M.L., Lopes C. et al.: Limitations to leaf photosynthesis in field-grown grapevine under drought-metabolic and modelling approaches. - Funct. Plant Biol. 29: 451-459, 2002. Go to original source...
  38. Mathur S., Mehta P., Jajoo A.: Effects of dual stress (high salt and high temperature) on the photochemical efficiency of wheat leaves (Triticum aestivum). - Physiol. Mol. Biol. Plant. 19: 179-188, 2013.
  39. Maxwell K., Johnson G.N.: Chlorophyll fluorescence - a practical guide. - J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  40. Mehta P., Jajoo A., Mathur S. et al.: Chlorophyll a fluorescence study revealing effects of high salt stress on photosystem II in wheat leaves. - Plant Physiol. Bioch. 48: 16-20, 2010. Go to original source...
  41. Misra A.N., Srivastava A., Strasser R.J.: Utilization of fast chlorophyll a fluorescence technique in assessing the salt/ion sensitivity of mung bean and Brassica seedlings. - J. Plant Physiol. 158: 1173-1181, 2001. Go to original source...
  42. Miyake C., Horiguchi S., Makino A. et al.: Effects of light intensity on cyclic electron flow around PSI and its relationship to non-photochemical quenching of Chl fluorescence in tobacco leaves. - Plant Cell Physiol. 46: 1819-1830, 2005.
  43. Moradi F., Ismail A.M.: Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. - Ann. Bot.-London 99: 1161-1173, 2007. Go to original source...
  44. Murashige T., Skoog F.: A revised medium for rapid growth and bio assays with tobacco tissue cultures. - Physiol. Plantarum 15: 473-497, 1962. Go to original source...
  45. Netondo G.W., Onyango J.C., Beck E.: Sorghum and salinity. - Crop Sci. 44: 797-805, 2004. Go to original source...
  46. Oukarroum A., Bussotti F., Goltsev V., Kalaji H.M.: Correlation between reactive oxygen species production and photochemistry of photosystems I and II in Lemna gibba L. plants under salt stress. - Environ. Exp. Bot. 109: 80-88, 2015. Go to original source...
  47. Oukarroum A., El Madidi S., Strasser R.J.: Differential heat sensitivity index in barley cultivars (Hordeum vulgare L.) monitored by chlorophyll a fluorescence OKJIP. - Plant Physiol. Bioch. 105: 102-108, 2016. Go to original source...
  48. Oukarroum A., Goltsev V., Strasser R.J.: Temperature effects on pea plants probed by simultaneous measurements of the kinetics of prompt fluorescence, delayed fluorescence and modulated 820 nm reflection. - PLoS ONE 8: e59433, 2013. Go to original source...
  49. Oukarroum A., Schansker G., Strasser R.J.: Drought stress effects on photosystem I content and photosystem II thermotolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. - Physiol. Plantarum 137: 188-199, 2009. Go to original source...
  50. Pereira W.E., de Siqueira D.L., Martínez C.A. et al.: Gas exchange and chlorophyll fluorescence in four citrus rootstocks under aluminium stress. - J. Plant Physiol. 157: 513-520, 2000. Go to original source...
  51. Pérez-López U., Robredo A., Lacuesta M. et al.: Elevated CO2 reduces stomatal and metabolic limitations on photosynthesis caused by salinity in Hordeum vulgare. - Photosynth. Res. 111: 269-283, 2012. Go to original source...
  52. Ranjbarfordoei A., Samson R., Van Damme P.: Chlorophyll fluorescence performance of sweet almond [Prunus dulcis (Miller) D. Webb] in response to salinity stress induced by NaCl. - Photosynthetica 44: 513-522, 2006. Go to original source...
  53. Redondo-Gómez S., Wharmby C., Castillo J.M. et al.: Growth and photosynthetic responses to salinity in an extreme halophyte, Sarcocornia fruticosa. - Physiol. Plantarum 128: 116-124, 2006. Go to original source...
  54. Salvatori E., Fusaro L., Gottardini E. et al.: Plant stress analysis: Application of prompt, delayed chlorophyll fluorescence and 820 nm modulated reflectance. Insights from independent experiments. - Plant Physiol. Bioch. 85: 105-113, 2014. Go to original source...
  55. Salvatori E., Fusaro L., Strasser R.J. et al.: Effects of acute O3 stress on PSII and PSI photochemistry of sensitive and resistant snap bean genotypes (Phaseolus vulgaris L.), probed by prompt chlorophyll "a" fluorescence and 820 nm modulated reflectance. - Plant Physiol. Bioch. 97: 368-377, 2015. Go to original source...
  56. Santos C.V.: Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. - Sci. Hortic.-Amsterdam 103: 93-99, 2004.
  57. Schansker G., Tóth S.Z., Strasser R.J.: Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. - BBA-Bioenergetics 1706: 250-261, 2005. Go to original source...
  58. Sharkey T.D.: What gas exchange data can tell us about photosynthesis. - Plant Cell Environ. 39: 1161-1163, 2016. Go to original source...
  59. Sharkey T.D., Bernacchi C.J., Farquhar G.D. et al.: Fitting photosynthetic carbon dioxide response curves for C3 leaves. - Plant Cell Environ. 30: 1035-1040, 2007. Go to original source...
  60. Strasser R.J., Tsimilli-Michael M., Alaka S.: Analysis of the fluorescence transient. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: a Signature of Photosynthesis. Pp. 321-362. Springer, Dordrecht 2004. Go to original source...
  61. Strasser R.J., Tsimilli-Michael M., Qiang S. et al.: Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. - BBA-Bioenergetics 1797: 1313-1326, 2010. Go to original source...
  62. Thomas F.M., Gausling T.: Morphological and physiological responses of oak seedlings (Quercus petraea and Q. robur) to moderate drought. - Ann. Forest Sci. 57: 325-333, 2000.
  63. van Heerden P.D.R., Swanepoel J.W., Krüger G.H.J.: Modulation of photosynthesis by drought in two desert scrub species exhibiting C3-mode CO2 assimilation. - Environ. Exp. Bot. 61: 124-136, 2007. Go to original source...
  64. Wilson K.B., Baldocchi D.D., Hanson P.J.: Spatial and seasonal variability of photosynthetic parameters and their relationship to leaf nitrogen in a deciduous forest. - Tree Physiol. 20: 565-578, 2000. Go to original source...
  65. Yamori W., Evans J.R., von Caemmerer S.: Effects of growth and measurement light intensities on temperature dependence of CO2 assimilation rate in tobacco leaves. - Plant Cell Environ. 33: 332-343, 2010. Go to original source...
  66. Yang C., Zhang Z.S., Gao H.Y., et al.: The mechanism by which NaCl treatment alleviates PSI photoinhibition under chilling-light treatment. - J. Photoch. Photobio. B 140: 286-291, 2014. Go to original source...
  67. Zhang L., Xing D.: Rapid determination of the damage to photosynthesis caused by salt and osmotic stresses using delayed fluorescence of chloroplasts. - Photochem. Photobio. Sci. 7: 352-360, 2008. Go to original source...
  68. Zivcak M., Brestic M., Balatova Z. et al.: Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. - Photosynth. Res. 117: 529-546, 2013. Go to original source...