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�� Introduction

Consider the system

���

d

dt
x = Ax+Φ(x, y),

d

dt
y = By +Ψ(x, y),

where

• (x, y) ∈ R
m × R

n� Rn denotes the n�dimensional Euclidean space�

• A ∈ R
m×m and A = −AT �

• the eigenvalues of B ∈ R
n×n have negative real parts�

• Φ and Ψ are at least C� functions which vanish together with their derivatives

at the origin� i�e��

���
Φ ∈ Ck(Rm × R

n,Rm), Φ(0, 0) = 0, dΦ(0, 0) = 0,

Ψ ∈ Ck(Rm × R
n,Rn), Ψ(0, 0) = 0, dΨ(0, 0) = 0,

���



where k � 2� dΦ =
(
��
�x
, ��
�y

)
and Ck(Rm ×R

n,R�) is the class of all functions

ζ : Rm × R
n → R

�

which have continuous derivatives of order k�

To investigate the dynamic of the system ��� in a neighborhood of the origin

we apply the center manifold theory which mainly consists of the following three

theorems�

Theorem 1.1 �	� 
�� Given the conditions (2), there exists a center manifold

Mc = {(x, y) ∈ B�(0)× R
n ; y = h(x)},

where B�(0) = {x ∈ R
m ; |x| < δ}, |x|� = 〈x, x〉 and 〈x, z〉 =

�∑
i��
xizi for x, z ∈ R

�,

h ∈ Ck−�(Rm,Rn), h(0) = 0 and δ is a sufficiently small real positive number.

It is convenient to use the following notation�

f(x, y) =
(
Ax+Φ(x, y), By +Ψ(x, y)

)T
,

etf denotes the ow generated by the vector �eld f � etf (x, y) is the point drifted by

the ow etf at time t from the point (x, y)�

The zero solution is said to be stable� i� for every neighborhood W of the origin

there exists a neighborhood V of the origin such that

etfV ⊂W ∀t � 0,

where etfV = {etf (x, y) ; (x, y) ∈ V }� The zero solution is asymptotically stable� i�

it is stable and there exists a neighborhood Ξ such that

lim
t→�∞

etf (x, y) = 0

for all (x, y) ∈ Ξ�
The ow on the center manifold Mc is governed by the system

(3) ż = Az +Φ(z, h(z)).

The next theorem tells us that ��� possesses all the necessary information needed to

determine the asymptotic behavior of ��� in a neighborhood of the origin�
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Theorem 1.2 �	��

�a� If the zero solution of (3) is stable (asymptotically stable) (unstable), then the

zero solution of (1) is stable (asymptotically stable) (unstable).

�b� If the zero solution of (3) is stable, then there exists a neighborhood V of the

origin such that for every (x�, y�) ∈ V one can find z� such that

etf (x�, y�) =
(
z(t, z�), h(z(t, z�))) +O(e

−�t
)
,

where γ > 0 is a constant, z(t, z�) is the solution of (3) with the initial condition

z(0, z�) = z�.

The center manifold can be approximated to any degree of accuracy� For C�

functions ϕ : Rm → R
n de�ne the nonlinear operator

(Mϕ)(x) = dϕ(x)
[
Ax+Φ(x, ϕ(x))

]
−Bϕ(x)−Ψ(x, ϕ(x)).

For the function h(x) de�ning the center manifold Mc we have (Mh)(x) = 0�

Theorem 1.3 �	�� Let ϕ be a C� mapping of a neighborhood of the origin in Rm

into Rn with ϕ(0) = 0, dϕ(0) = 0. Suppose that (Mϕ)(x) = O(|x|q) as x → 0,

where q > 1. Then |h(x)− ϕ(x)| = O(|x|q) as x→ 0.

The main results of this paper occupy the place of Theorem ��� among these three

theorems� In fact� Theorem ��� can be replaced by two stronger theorems �Theorem

��� and Theorem ����� which are the core of the theory proposed here� At the same

time� the method developed here together with Theorems ���� ��� give us a powerful

tool for the investigation of stability and stabilizability of nonlinear systems�

For small (x, y) we prove the existence of the decoupling normalizing transforma�

tion

�	�
x̃ = x+ ν(x, y − h(x)), ν(x, 0) = 0, dν(0, 0) = 0,
ỹ = y − h(x),

under which the system ��� has the form

���

d

dt
x̃ = Ax̃+Φ(x̃, h(x̃)),

d

dt
ỹ = Bỹ + Ψ̃(x̃, ỹ),

where h(x) is the function from Theorem ���� Φ(x̃, h(x̃)) is from ���� Ψ̃(x̃, 0) = 0 for

all x̃ su�ciently small and dΨ̃(0, 0) = 0� If Φ,Ψ are Ck functions� then ν(x, y−h(x))
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is a Ck−� function� ν(x, y) can be approximated by some known function� We will

show how to calculate this approximation in the third section of this paper� To know

ν(x, y, ) is important� both for the investigation of the stabilization and for the design

of a stabilizing feedback� To illustrate that� we will prove several su�cient conditions

for local stabilizability of nonlinear systems with noncontrollable linearizations and

propose a stabilizer design procedure for a bilinear system�

�� Existence of decoupling normalizing transformation

Here we prove the existence of the decoupling normalizing transformation �	�� The

proof is analogous to the proof of Theorem ��� �
��

It is more convenient to rewrite the system ��� in the new coordinates

x = x,

y = y − h(x),

where h(x) is from Theorem ���� Under the coordinate transformation the system

��� assumes the form

���
ẋ = Ax+ Φ̂(x, y),

ẏ = By + Ψ̂(x, y),

where

Φ̂(x, y) = Φ(x, y + h(x)),

Ψ̂(x, y) = dh(x)
(
Φ(x, h(x)) − Φ(x, y + h(x))

)
+Ψ(x, y + h(x)) −Ψ(x, h(x)).

Now for the system ��� we prove the existence of the function ν(x, y) such that under

the transformation

���
x̃ = x+ ν(x, y)

ỹ = y

the system ��� becomes ����

Theorem 2.1. Let Φ̂(x, y), Ψ̂(x, y) be Ck functions (k � 3) which vanish together

with their derivatives at the origin, i.e.,

Φ̂(0, 0) = 0, dΦ̂(0, 0) = 0, dΨ̂(0, 0) = 0

��




and, in addition,

Ψ̂(x, 0) = 0 for all (x, 0) ∈ Q,

where Q is a neighborhood of the origin. Then there exist a neighborhood Q̀ ⊆ Q of
the origin and a Ck−� function ν(x, y) such that

ν(x, 0) = 0 ∀ (x, 0) ∈ Q̀, dν(0, 0) = 0,

and under the normalizing transformation (7) the system (6) assumes the form (5).

Proof� Introducing the scalar change of variables (x, y) −→ (λx, λy) and mul�

tiplying Φ̂� Ψ̂ by ω(|x|�+ |y|�+Kλ�) where K is a su�ciently large positive constant

and ω(r) is a C∞ real valued function satisfying

0 � ω(r) � 1 ∀ r � 0,

ω(r) ≡ 1 ∀ 0 � r � �
� ,

ω(r) ≡ 0 ∀ 1 � r <∞,

we obtain

�
�
ẋ = Ax+Φ(x, y, λ),

ẏ = By +Ψ(x, y, λ),

where

Φ(x, y, 0) = Ψ(x, y, 0) = 0,

and for λ 
= 0
Φ(x, y, λ) =

1

λ
ω(|x|� + |y|� +Kλ�)Φ̂(λx, λy),

Ψ(x, y, λ) =
1

λ
ω(|x|� + |y|� +Kλ�)Ψ̂(λx, λy),

and the following conditions hold�

�ai� Φ(x, y, λ)� Ψ(x, y, λ) exist and are continuous for all (x, y, λ) and for each �xed

λ they are Ck functions in (x, y)�

�aii� Φ(0, 0, λ) = 0� for any �xed λ we have dΦ(0, 0, λ) = 0� dΨ(0, 0, λ) = 0. There

exists a real positive value δ > 0 such that Ψ(x, 0, λ) = 0 ∀x ∈ R
m� |λ| < δ�

�aiii� Φ� Ψ ≡ 0 ∀ |x|�+|y|� � 1� where |·| represents the Euclidean norm corresponding

to the usual scalar product 〈·, ·〉 on pairs of vectors�

�aiv�
(
�
�x

)i( �
�y

)j
(Φ,Ψ) −→ 0 uniformly in (x, y) ∈ R

m ×R
n as λ→ 0 for |i|+ |j| � k�

( ∂
∂x

)i( ∂
∂y

)j
=
( ∂
∂x�

)i�
· · ·
( ∂
∂xm

)im( ∂
∂y�

)j�
· · ·
( ∂
∂yn

)jn
,
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where i = (i�, . . . , im)� j = (j�, . . . , jn) are an m�tuple and an n�tuple of non�

negative integers respectively� |i| = i� + · · ·+ im� |j| = j� + · · ·+ jn.
If λ 
= 0� then the systems ��� and �
� are locally �near the origin� related by a

scalar change of variables� Therefore it is su�cient to prove Theorem ��� only for

the system �
��

The function ν(x, y) is a solution of the following equation in partial derivatives�

Aν − ∂ν
∂x
Ax− ∂ν

∂y
By =

∂ν

∂x
Φ(x, y, λ) +

∂ν

∂y
Ψ(x, y, λ) + Φ(x, y, λ) − Φ(x+ ν, 0, λ),���

ν(x, 0) = 0 ∀x ∈ R
m,

dν(0, 0) = 0.

To solve the equation ��� we take into account that

����
d

dt
[eAt(e−tf )∗ν(x, y)] = eAt(e−tf )∗[Φ(x, y, λ)− Φ(x+ ν, 0, λ)],

where f =
(
Ax + Φ(x, y, λ)� By +Ψ(x, y, λ)

)T
� d

dte
At = AeAt� eAt|t�� = I� I is the

identity matrix�

(etf )∗ϕ(x, y) = ϕ(etf (x, y)) ∀t ∈ R.

Integrating ���� with respect to t we obtain

���� etA(e−tf )∗ν(x, y) − ν(x, y) =
∫ t

�

eA� (e−�f )∗[Φ(x, y, λ)− Φ(x+ ν, 0, λ)] dτ.

Since A = −AT and the eigenvalues of B ∈ R
n×n have negative real parts� there

exists a compact convex set Λ ⊂ R
m × R

n such that

{(x, y) ∈ R
m × R

n ; |x|+ |y| � 2} ⊂ Λ

and

etfΛ ⊂ Λ ∀ t � 0.

For a proof see e�g� �����

Consider the Banach space

Υl = {ν = ν(x, y) satisfying �bi���biii�}.

�bi� ν is a real vector�valued function such that ν : Rm ×R
n → R

m and �
�y
ν(x, y) is

a Cl function�

�bii� ν(x, 0) = 0 ∀x ∈ R
m� dν(0, 0) = 0.
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�biii�

‖ν‖ = max
|i|�|j|�l

sup
�x�y�∈Rm×Rn

∣∣∣( ∂
∂x

)i( ∂
∂y

)j��
ν(x, y)

∣∣∣ <∞.

If ν ∈ Υk−�� then

���� |ν(x, y)| =
∣∣∣ ∫ y

�

∂

∂y
ν(x, θ) dθ

∣∣∣ � ‖ν‖ · |y| ∀(x, y) ∈ R
m × R

n.

In accordance with condition �aii� we have

Ψ(x, y, λ) =
(∫ �

�

∂

∂y
Ψ(x, sy, λ) ds

)
· y

and �aiv� yields ∫ �

�

∂

∂y
Ψ(x, sy, λ) ds→ 0

uniformly in (x, y) ∈ R
m × R

n as λ→ 0�
We can choose a positive real value δ such that� for |λ| < δ�

|Py(etf (x, y))| � α(t) · e�−�������t ∀ t > 0, (x, y) ∈ R
m × R

n,����

|β(λ)| < µ,

where

• Py : Rm × R
n → R

n, Py(x, y) = y;

• α(t) is a polynomial in t with positive coe�cients�

• β(λ) � 0 is continuous in λ and β(λ)→ 0 as λ→ 0�
• µ = �

� min{|Re z| ; z is from the set of eigenvalues of B}.
For a proof of ���� see Lemma � on page ��� of �
� or Lemma � on page �� of �	��

Therefore ����� ���� imply� for ν ∈ Υk−��

��	� |e−At(etf )∗ν(x, y)| � α(t)e�−�������t‖ν‖ ∀ t > 0, (x, y) ∈ R
m × R

n,

where α(t) is a polynomial in t with positive coe�cients which does not depend on

ν ∈ Υk−�.

Thus if ν ∈ Υk−�� then it follows from ����� ��	� that

ν(x, y) =

∫ �

−∞
eA� (e−�f )∗

[
Φ(x, y, λ) − Φ(x+ ν(x, y), 0, λ)

]
dτ.

Consider the nonlinear operator

T�ν(x, y) =

∫ �

−∞
eA� (e−�f )∗

[
Φ(x, y, λ)− Φ

(
x+ ν(x, y), 0, λ

)]
dτ

���



which is de�ned� for |λ| < δ� on the Banach space Υk−�.

The conditions �aii���aiv� imply

Φ(x, y, λ)− Φ(x+ ν(x, y), 0, λ) ∈ Υk−�,

whenever Φ is a Ck function and ν ∈ Υk−��

Since the eigenvalues of A all have zero real parts� ��	� implies

|a−At(etf )∗[Φ(x, y, λ) − Φ(x+ ν(x, y), 0, λ)]|
� α(t) · e�−�������t · ‖Φ(Px(·), Py(·), λ)− Φ(Px(·) + ν(Px(·), Py(·)), 0, λ)‖,

where Px : R
m × R

n → R
m� Px(x, y) = x.

In what follows�

|(T�ν)(x, y)| <∞ ∀(x, y) ∈ R
m × R

n

for all ν ∈ Υk−� and |λ| < δ.
We now prove the existence of δ̂ > 0 such that� for |λ| < δ̂�

���� ‖(etf )∗‖ � α̂(t) · e�−��������t ∀t � 0,

where ‖(etf )∗‖ is the norm of the operator

(etf )∗ : Υk−� → Υk−�

and α̂(t)� β̂(λ) are of the same type as α(t)� α(t)� β(λ) from ����� ��	��

Introduce the notation

X i�j
x�y(t) =

( ∂
∂x

)i( ∂
∂y

)j
Px(e

tf (x, y)),

Y i�j
x�y(t) =

( ∂
∂x

)i( ∂
∂y

)j
Py(e

tf (x, y)).

Then
{
(X i�j

x�y(t), Y
i�j
x�y(t))

}
|i|�|j|�k−�

is the solution of the system

ẋ(t) = Ax(t) + Φ(x(t), y(t), λ),

ẏ(t) = By(t) + Ψ(x(t), y(t), λ),

d

dt
X i�j
x�y(t) = AX

i�j
x�y(t) +

( ∂
∂x

)i( ∂
∂y

)j
Φ(x(t), y(t), λ),

d

dt
Y i�j
x�y(t) = BY

i�j
x�y(t) +

( ∂
∂x

)i( ∂
∂y

)j
Ψ(x(t), y(t), λ),

���



where |i|+ |j| � k − 1� x(t) = Px(etf (x, y))� y(t) = Py(etf (x, y)) and

X i�j
x�y(0) = 0, Y

i�j
x�y(0) = 0 for |i|+ |j| � 2,

∂

∂y
Px(e

tf (x, y))
∣∣∣
t��
= 0,

∂

∂x
Py(e

tf (x, y))
∣∣∣
t��
= 0,

[ ∂
∂x�
Px(e

tf (x, y)), . . . ,
∂

∂xm
Px(e

tf (x, y))
]∣∣∣
t��
= Im,[ ∂

∂y�
Py(e

tf (x, y)), . . . ,
∂

∂yn
Py(e

tf (x, y))
]∣∣∣
t��
= In,

where Im ∈ R
m×m� In ∈ R

n×n are identity matrices� Using induction with respect

to |i|+ |j| = l we can prove the existence of δ̃ > 0 �which may depend on (i, j)� such

that for |λ| < δ̃

����
sup
�x�y�

∣∣∣( ∂
∂x

)i( ∂
∂y

)j
Py(e

tf (x, y))
∣∣∣

� α̃(t) · e�−��	�����t, 1 � |i|+ |j| � k − 1

where α̃(t) is a polynomial in t with positive coe�cients� β̃(λ) � 0 is continuous in

λ and β̃(λ)→ 0 as λ→ 0� µ is de�ned in �����

Step �� Let |i|+ |j| = 0� Then

ẏ(t) = By(t) +

∫ �

�

∂

∂y
Ψ(x(t), sy(t), λ) ds · y(t)

and the eigenvalues of B have negative real parts� Therefore there exists a positive

real value δ > 0 such that for |λ| < δ and |i|+ |j| = 1 the inequality ���� holds� For

a proof see Lemma � on page ��� of �
� or Lemma � on page �� of �	��

Step �� Let the inequality ���� hold for all |i|+|j| < l� Consider the case |i|+|j| = l�

����

d

dt
Y i�j
x�y(t) = BY

i�j
x�y(t) +

∂

∂y
Ψ(x(t), y(t), λ) · Y i�j

x�y(t)

+
∂

∂x
Ψ(x(t), y(t), λ) ·X i�j

x�y(t)

+ Ξ({X i�j
x�y(t)}|i|�|j|	l, {Y i�j

x�y(t)}|i|�|j|	l, λ),

where X���
x�y(t) = x(t)� Y

���
x�y (t) = y(t) and the function Ξ(·, ·, λ) satis�es the conditions

Ξ({X i�j
x�y(t)}|i|�|j|	l, 0, λ) = 0,

Ξ({X i�j
x�y(t)}|i|�|j|	l, {Y i�j

x�y(t)}|i|�|j|	l, 0) = 0.

���



Due to �aiii�� �aiv� and the induction hypothesis there exists δ̄ > 0 such that

sup
�x�y�

{∣∣∣Ξ({X i�j
x�y(t)}|i|�|j|	l, {Y i�j

x�y(t)}|i|�|j|	l, λ)
∣∣∣+ ∣∣∣ ∂

∂x
Ψ(x(t), y(t), λ) ·X i�j

x�y(t)
∣∣∣}

� α(t) · e�−�������t ∀ t � 0 |λ| < δ,��
�

where α(t) is a polynomial in t with positive coe�cients� β(λ) � 0 is continuous in

λ and β(λ)→ 0 as λ→ 0. The estimate for

∂

∂x
Ψ(x(t), y(t), λ) ·X i�j

x�y(t)

follows from the fact that X i�j
x�y(t) satis�es

d

dt
X i�j
x�y(t) = AX

i�j
x�y(t) +

( ∂
∂x

)i( ∂
∂y

)j
Φ(x(t), y(t), λ)

and y(t) is exponentially decreasing as t→ ∞.
Thus ���� and ��
� imply ���� for |i|+ |j| = l�
The inequality ���� yields �����

Since the conditions �aii���aiv� imply

Φ(x, y, λ)− Φ(x, 0, λ) ∈ Υk−�

we have

Φ(x, y, λ) − Φ(x+ ν(x, y), 0, λ) ∈ Υk−�

whenever Φ is a Ck function and ν ∈ Υk−�. Thus we obtain

‖Φ(Px(·), Py(·), λ)− Φ(Px(·) + ν(Px(·), Py(·)), 0, λ)‖
� ‖Φ(Px(·), Py(·), λ) − Φ(Px(·), 0, λ)‖
+ ‖Φ(Px(·), 0, λ)− Φ(Px(·) + ν(Px(·), Py(·)), 0, λ)‖

� ‖Φ(Px(·), Py(·), λ) − Φ(Px(·), 0, λ)‖
+Dk · ‖Φ(Px(·), 0, λ)‖Ck · (‖ν‖+ 1)k−�,

where k � 3� the constant Dk depends only on k and

‖Φ(Px(·), 0, λ)‖Ck = max|i|�k
sup
x∈Rm

∣∣∣( ∂
∂x

)i
Φ(x, 0, λ)

∣∣∣.
��	



Thus� taking into account ����� we obtain� for |λ| < δ̂�

‖T�ν‖ �
∫ ∞

�

α̂(τ)e�−�������� dτ ·
(
‖Φ(Px(·), Py(·), λ)− Φ(Px(·), 0, λ)‖

+Dk · ‖Φ(Px(·), 0, λ)‖Ck · (1 + ‖ν‖)k−�
)

∀ ν ∈ Υk−�,

where α̂(t) is a polynomial in t with positive coe�cients�

�aiv� implies

lim
�→�

{∫ ∞

�

α̂(τ)e�−�������� dτ · (‖Φ(Px(·), Py(·), λ) − Φ(Px(·), 0, λ)‖

+Dk · ‖Φ(Px(·), 0, λ)‖Ck · (1 + r)k−�)

}
= 0

for any positive real value r� Hence� for any r > 0� there exists δ(r) > 0 such that

T� : Br → Br for |λ| < δ(r),

where Br = {ν ∈ Υk−� ; ‖ν‖ � r}.
We now prove the existence of r > 0 such that� for all ν�, ν� ∈ Br�

(19) ‖T�ν� − T�ν�‖ � �
� · ‖ν� − ν�‖ for |λ| < δ(r).

It follows from ���� and the de�nition of T� that

(20)

‖T�ν� −T�ν�‖ �
∫ ∞

�

α̂(τ)e�−�������� dτ · ‖Φ(Px(·) + ν�, 0, λ)−Φ(Px(·) + ν�, 0, λ)‖.

It is easy to see that

����
Φ(x+ ν�(x, y), 0, λ)− Φ(x+ ν�(x, y), 0, λ)

=

∫ �

�

∂

∂x
Φ(x+ sν� + (1− s)ν�, 0, λ) ds

∫ y

�

( ∂
∂y
ν�(x, θ)− ∂

∂y
ν�(x, θ)

)
dθ.

Due to �aiii� we obtain from ���� that ∀ ν�� ν� ∈ Br�

(22) ‖Φ(Px(·)+ν�, 0, λ)−Φ(Px(·)+ν�, 0, λ)‖ � C(r)·‖Φ(Px(·), 0, λ)‖Ck−� ·‖ν�−ν�‖

where C(r) is a constant depending only on r�

Thus ���� together with ���� and �aiv� yield ����� We have proved the existence

of r > 0 and δ(r) > 0 such that� for |λ| < δ(r)� T� is a contraction mapping

���



on Br ⊂ Υk−�. Therefore� according to Banach�s contraction principle ���� there

exists a single function ν(x, y) ∈ Υk−� such that ν = T�ν� The function ν(x, y)

was constructed by the following procedure� if ν(x, y) ful�ls ���� then ν(x, y) ful�ls

ν = T�ν� The opposite implication follows from the fact that� according to Banach�s

contraction principle ���� ν = T�ν has unique solution� �

Theorem ��� can be reformulated in terms of the original system ����

Theorem 2.2. Let Φ(x, y), Ψ(x, y) be Ck functions (k � 3) which vanish together

with their derivatives at the origin, i.e.,

Φ(0, 0) = 0, Ψ(0, 0) = 0, dΦ(0, 0) = 0, dΨ(0, 0) = 0.

Then there exist a neighborhood Q of the origin, a Ck−�function ν(x, y) and a Ck

function h(x) such that

ν(x, 0) = 0 ∀ (x, 0) ∈ Q, dν(0, 0) = 0, h(0) = 0, dh(0) = 0,

and under the normalizing transformation

x̃ = x+ ν(x, y − h(x)),
ỹ = y − h(x),

the system (1) assumes the form

d

dt
x̃ = Ax̃+Φ(x̃, h(x̃)),

d

dt
ỹ = Bỹ + Ψ̃(x̃, ỹ),

where Ψ̃(x̃, 0) = 0 ∀ (x̃, 0) ∈ Q, dΨ̃(0, 0) = 0.

Remark� A decoupling normalizing transformation is not unique because of

non�uniqueness of the center manifold�

���



�� Approximation of the decoupling normalizing transformation

The function ζ(x, y) = ν(x, y− h(x)) can be approximated to any degree of accu�

racy� To show that we introduce the nonlinear operator

J (µ) = Aµ− Lfµ+ Φ(x+ µ, h(x+ µ))− Φ(x, y),

where Lfµ is the Lie derivative� i�e��

Lfµ =
d

dt
(etf )∗µ

∣∣∣
t��
,

h(x) is the function from Theorem ���� We recall that

g(x, y) = O((|x|+ |y|)q · |y − h(x)|) as (x, y)→ 0,

i� there exists a neighborhood of the origin W such that

|g(x, y)| � C · (|x|+ |y|)q · |y − h(x)| ∀ (x, y) ∈W,

where C is a positive real constant�

Theorem 3.1. Suppose µ is a Ck−� (k � 3), function such that dµ(0, 0) = 0

and, for some  > 0, µ(x, h(x)) = 0 ∀ |x| < . Moreover, assume

J (µ) = O((|x|+ |y|)q · |y − h(x)|) as (x, y)→ 0

where q � 1. Then

���� ζ(x, y)− µ(x, y) = O((|x|+ |y|)q · |y − h(x)|) as (x, y)→ 0.

Proof� Following the proof of Theorem ���� it is su�cient to prove ���� only

for the system �
� with λ su�ciently small� Take the function

��	� θ�(x, y) =

{
�
�
µ(λx, λy) · ω(|x|� + |y|� +Kλ�) for λ 
= 0,
0 for λ = 0,

where x = x� y = y−h(x) and ω(r) is the truncated function introduced in the proof

of Theorem ���� Then θ� ∈ Υk−� and there exist r > 0 and λ > 0 such that

θ� ∈ IntBr = {ν ∈ Υk−� ; ‖ν‖ < r} ∀|λ| < λ.

���



de�ne a mapping S� : Υ
k−� → Υk−� by

S�z = T�(z + θ�)− θ�.

Since there exists δ(r) > 0 such that T� is a contraction mapping on Br for |λ| < δ(r)�
S� is a contraction mapping on

Ξ(λ, q) = {ϕ ∈ Υk−� ; ‖ϕ+ θ�‖ � r, |ϕ(x, y)| � K̃ · ((|x| + |y|)q · |y|)
∀ (x, y) ∈ R

m × R
n},

where K̃ is a positive real constant� Indeed� it is su�cient only to show that

S� : Ξ(λ, q)→ Ξ(λ, q).

If ϕ ∈ Ξ(λ, q)� then
‖S�ϕ+ θ�‖ = ‖T�(ϕ+ θ�)‖ � r,

where the last inequality follows from

T� : Br → Br.

Thus it remains to prove that� for all (x, y) ∈ R
m × R

n,

|ϕ(x, y)| � K̃ · ((|x| + |y|)q · |y|)

yields

|(S�ϕ)(x, y)| � K̃ · ((|x| + |y|)q |y|)

for some positive K̃�

The function θ�(x, y) can be represented as

−θ�(x, y) = −
∫ �

−∞

d

dτ
(eA� (e−�f )∗θ�(x, y)) dτ = −

∫ �

−∞
eA� (e−�f )∗(Aθ�−Lfθ�) dτ.

Since� for q � 1�

lim
�→�

|Aθ� − Lfθ� +Φ(x+ θ�, 0, λ)− Φ(x, y, λ)|
(|x| + |y|)q · |y| = 0

uniformly with respect to (x, y), we have

|Aθ� − Lfθ� +Φ(x+ θ�, 0, λ)− Φ(x, y, λ)| � R(λ)((|x|+ |y|)q · |y|),

��




where R(λ) � 0 and R(λ)→ 0 as λ→ 0. Therefore� we obtain

−θ�(x, y) = −
∫ �

−∞
eA� (e−�f )∗{[Φ(x, y, λ)− Φ(x+ θ�, 0, λ)] +N(x, y)} dτ,

where

N(x, y) = Aθ� − Lfθ� +Φ(x+ θ�, 0, λ)− Φ(x, y, λ) and

|N(x, y)| � R(λ)
(
(|x|+ |y|)q · |y|

)
.

Thus

(S�ϕ)(x, y) =

∫ �

−∞
eA� (e−�f )∗[Φ(Px(·)+θ�, 0, λ)−Φ(Px(·)+θ�+ϕ, 0, λ)−N(x, y)] dτ.

Since

|Φ(x+ θ�, 0, λ)− Φ(x+ θ� + ϕ, 0, λ)|

=
∣∣∣( ∫ �

�

∂

∂x
Φ(x+ θ� + sϕ, 0, λ) ds

)
· ϕ(x, y)

∣∣∣ � ‖Φ(Px(·), 0, λ)‖C� · K̃(|x|+ |y|)q · |y|

and the eigenvalues of A all have zero real parts� we have

|e−At(etf )∗(Φ(x+ θ�, 0, λ)− Φ(x+ θ� + ϕ, 0, λ)−N(x, y))|
� α(t) ·

(
‖Φ(Px(·), 0, λ)‖C� · K̃ +R(λ)

)
·
∣∣∣(etf )∗((|x| + |y|)q × |y|)

∣∣∣
for t > 0, (x, y) ∈ R

m × R
n,

where α(t) is a polynomial in t with positive coe�cients� Using ���� we obtain the

existence of C > 0 and δ̃ > 0 such that

α(t) ·
∣∣(etf )∗((|x|+ |y|)q · |y|)

∣∣ � C · (|x|+ |y|)q · |y|

for all t > 0� |λ| < δ̃ and (x, y) ∈ R
m × R

n� Thus it follows from �aiv� that there

exists δ̂ > 0 such that

C · (‖Φ(Px(·), 0, λ)‖C� · K̃ +R(λ)) � K̃

for all |λ| � δ̂� Therefore

|(S�ϕ)(x, y)| � K̃ · (|x|+ |y|)q · |y|

for all (x, y) and |λ| � δ̂� The proof is completed� �

���



Now using Theorem ��� and Theorem ��� we can approximate the decoupling

normalizing transformation

x̃ = x+ ν(x, y − h(x)),
ỹ = y − h(x),

to any degree of accuracy� where ν(x, 0) = 0� h(0) = 0� dν(0, 0) = 0� dh(0) = 0.

Consider more thoroughly the numerical procedure for the calculation of asymp�

totic series for ν� For simplicity we suppose that the coordinate transformation

x = x,

y = y − h(x)

has been already applied� Thus we deal with the system ���� Then the function

ν(x, y) satis�es the equation

Λν = − dνΩ− {Φ̂(x, y)− Φ̂(x+ ν, 0)},

where

Λν = adA ν +
∂ν

∂y
By, adA ν =

∂ν

∂x
Ax−Aν

and

Ω(x, y) =
(
Φ̂(x, y), Ψ̂(x, y)

)T
.

Let y · ℘i be a linear space of vector �elds whose coe�cients are homogeneous poly�

nomials of degree i+1 and for every g ∈ y ·℘i we have g(x, 0) = 0 ∀x ∈ R
m� Suppose

further that we have the asymptotic series

ν =
∞∑
i��

νi,

Ω =
∑
i��

Ωi,

Φ̂(x, y)− Φ̂(x+ ν, 0) =
∞∑
i��

[Φ(x, y)− Φ(x+ ν, 0)]i��,

where νi� [Φ(x, y)−Φ(x+ ν, 0)]i�� ∈ y ·℘i and Ωi ∈ ℘i� ℘i is a linear space of vector
�elds whose coe�cients are homogeneous polynomials of degree i� Then we have to

solve for {νi}∞
i�� the following linear equations in the linear spaces {y · ℘i}∞

i���

���� Λνl = −
∑

i�j�l��
l��� j��

dνiΩj − [Φ(x, y)− Φ(x+ ν, 0)]l�� (l = 1, 2, . . .)

�	�



The solution {νl}∞
l�� exists and is unique� Namely� the following statement is true�

Proposition 3.1. There exists Λ−� : y · ℘i → y · ℘i and

Λ−�h = −
∫ ∞

�

e−A�h(eA�x, eB�y) dτ

for h ∈ y · ℘i (i = 1, 2, . . .).

Proof� Suppose there exists g 
= 0� g ∈ y · ℘i� such that Λg = 0� Then

d

dt
{e−Atg(eAtx, eBty)} = 0.

Thus

e−Atg(eAtx, eBty) = g(x, y)

for t � 0� But g ∈ y · ℘i and consequently

lim
t→∞

e−Atg(eAtx, eBty) = 0.

Hence g(x, y) = 0� Thus Λg = 0 implies g = 0� This yields the existence of Λ−�� �

Example ���� Consider the polynomial system

ẋ = Ax+ (V��x+ V��y) · 〈k, y〉 ,

ẏ = By + (V��x+ V��y) · 〈k, y〉 ,

where the eigenvalues of A ∈ R
m×m have zero real parts� the eigenvalues of B ∈ R

n×n

have negative real parts� V�� ∈ R
m×m� V�� ∈ R

m×n� V�� ∈ R
n×m� V�� ∈ R

n×n and

k ∈ R
n� Then for l = 1 the equation ���� has the form

Λν� = −(V��x+ V��y) · 〈k, y〉 .

Using Proposition ���� we obtain

ν� =

∫ ∞

�

e−A� (V��e
A�x+ V��e

B�y) ·
〈
k, eB�y

〉
dτ

and

ν = ν� +O((|x| + |y|)�|y|).
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�� Additional smoothness

Smoothness and�or real analyticity of the decoupling normalizing transformation

is completely determined by smoothness and�or real analyticity of a center manifold�

Consider the sequence

ξ� = −
∫ �

−∞
eA� (e−�f )∗[Φ(x, y, λ)− Φ(x, 0, λ)] dτ, ξ� = T�ξ�, . . . , ξj = T�ξj−�, . . . ,

where Φ(x, y, λ) and T� are de�ned in the proof of Theorem ���� Then {ξj}∞
j�� are

Ck functions whenever f is a Ck vector �eld and |λ| < δ� where δ is a su�ciently

small positive real value� It has been proved in Section � that lim
i→∞

ξi = ν in the

Υk−� topology� Thus a restriction of ν to any closed ball in R
m × R

n is the limit

of {ξi}∞
i�� in the Ck−� topology� Moreover for su�ciently small δ and |λ| < δ the

(k−2)nd derivatives of ν are uniformly Lipschitzian� Using this fact and the method

of proof of Theorem 	�� from ���� one can show that� for λ su�ciently small� ν is a

Ck function on a closed ball in Rm × R
n.

In general real analyticity of the vector �eld f does not imply the existence of a

real analytic center manifold �
�� But if the function h(x) from Theorem ��� and the

vector �eld f are real analytic and moreover

A = −AT ,

then the decoupling normalizing transformation is also real analytic� To prove that

one de�nes the norm

‖g‖i = sup
|x|�|y|��

∣∣∣ ∂
∂y
g(x, y)

∣∣∣ on y · ℘i.

If A = −AT � then there exists a constant K > 0 such that

���� ‖Λ−�‖i � Ki ∀ i = 1, 2, . . . .

Thus using ���� one can show that

���� ‖νi‖i �M i,

where the constant M > 0� ���� means real analyticity of ν� The details of this

scenario are quite laborious so we do not present them here� It is necessary only to

note that the condition A = −AT is quite important� In general� for an arbitrary

matrix A� whose eigenvalues have zero real parts� there exists no constant K > 0 for

which ���� holds�
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�� Local stabilization of nonlinear system

with noncontrollable linearization

Here we continue the work begun in ��� ��� Namely� we apply the results obtained

above in order to investigate the local stabilization of the single�input nonlinear

system

����
ẋ = Ax+Φ(x, y) +G(x, y) · u,
ẏ = By +Ψ(x, y) + (q +Q(x, y)) · u,

where the control value u ∈ R and A� B� Φ� Ψ have been de�ned in ����

G : Rm × R
n → R

m,

Q : Rm × R
n → R

n

are C∞ function which vanish at the origin� i�e�� G(0, 0) = 0� Q(0, 0) = 0�

Definition 5.1. The system ���� is said to be locally stabilizable at the origin i�

there exists a C� feedback u = w(x, y) which vanishes together with its derivatives

at the origin �i�e�� w(0, 0) = 0, dw(0, 0) = 0�� such that the zero solution of the closed

loop system �the system ���� with u = w(x, y)� is asymptotically stable�

Due to Theorem ��� there exists a decoupling normalizing transformation �	� under

which the system ���� has the form

����

d

dt
x̃ = Ax̃+Φ(x̃, h(x̃)) + G̃(x̃, ỹ) · u,
d

dt
ỹ = Bỹ + Ψ̃(x̃, ỹ) + (q + Q̃(x̃, ỹ)) · u,

where

G̃(x̃, ỹ) = G(x, y) +
∂

∂z
ν(z, y − h(x))|z�xG(x, y)

+
∂

∂y
ν(x, ξ)|
�y−h�x�(q +Q(x, y)− ∂

∂x
h(x)G(x, y)),

Q̃(x̃, ỹ) = Q(x, y)− ∂

∂x
h(x)G(x, y)

and (x̃, ỹ)� (x, y) are connected by the decoupling normalizing transformation �	��

It is easy to see that ỹ = 0 yields x̃ = x and y = h(x̃). Thus

G̃(x̃, 0) = G(x̃, h(x̃)) +
∂

∂y
ν(x̃, 0)

(
q +Q(x̃, h(x̃))− ∂

∂x
h(x̃)G(x̃, h(x̃))

)
.
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The next theorem gives us some su�cient conditions for local stabilizability of the

nonlinear system �����

Theorem 5.1. Let the system

��
�
d

dt
x̃ = Ax̃+Φ(x̃, h(x̃))

be stable, let V (x̃) be its C∞ weak Liapunov’s function, i.e., there exists δ > 0

such that V (x̃) > 0 for all 0 < |x̃| < δ, V (0) = 0, and
〈
dV (x̃), Ax̃+Φ(x̃, h(x̃))

〉
� 0 ∀ |x̃| < δ. Suppose further that for every complete trajectory x̃(t, x̃(0)) = {x̃(t) ;
|x̃(0)| < δ, 0 � t <∞} of ���� which satisfies

����
〈
dV (x̃(t)), G̃(x̃(t), 0)

〉
= 0 ∀ t � 0

we have x(t) = 0. Then the system (27) is locally stabilizable at the origin by the

feedback u = −
〈
dV (x̃), G̃(x̃, ỹ)

〉
.

Proof� According to Theorem ��� the system ���� with u = −
〈
dV (x̃), G̃(x̃, ỹ)

〉
has a center manifold ỹ = H(x̃)� Then due to Theorem ��� �and�or Theorem ���� the

zero solution of the closed loop system is asymptotically stable i� the zero solution

of the system

����
d

dt
x̃ = Ax̃+Φ(x̃, h(x̃))− G̃(x̃,H(x̃))

〈
dV (x̃), G̃(x̃,H(x̃))

〉
is asymptotically stable� If there exists δ > 0 such that lim

t→∞
x̃(t, x∗) = 0 ∀ |x∗| < δ�

where x̃(t, x∗) is the solution of ���� generated by the initial conditions x̃(0, x∗) = x∗�

then the proof is completed� Otherwise for every δ > 0 one can �nd 0 < |x∗| < δ
such that lim

t→∞
x̃(t, x∗) 
= 0 and x̃(t, x∗) satis�es

〈
dV (x̃(t, x∗)), G̃(x̃(t, x∗),H(x̃(t, x∗)))

〉
= 0 ∀ t � 0.

But
(
x̃(t, x∗),H(x̃(t, x∗))

)
is a solution of the system ���� with u = 0� Hence� due

to the stability of the zero solution of ��
�� lim
t→∞

H(x̃(t, x∗)) = 0. Thus there exists a

nontrivial trajectory of ��
� which satis�es ����� This contradicts the conditions of

the theorem� The proof is completed� �

Using the su�cient conditions of stabilization obtained in ��� we can formulate the

following corollary of Theorem ����

Corollary 1. Let Φ(x̃, h(x̃)) = 0, AT = −A, let G̃(x̃, 0) be a C∞ function and

for δ sufficiently small let

rank{adiA G̃(x̃, 0)}∞
i�� = m, ∀ 0 < |x̃| < δ

�		



where ad�A G̃(x̃, 0) = G̃(x̃, 0), adA G̃(x̃, 0) =
�
�	xG̃(x̃, 0)Ax̃−AG̃(x̃, 0) and adiA G̃(x̃, 0)

= adA(ad
i−�
A G̃(x̃, 0)). Then the system (27) is locally stabilizable at the origin by

the feedback u = −
〈
x̃, G̃(x̃, ỹ)

〉
.

Other corollaries of Theorem ��� can be formulated with the help of the su�cient

conditions of stabilization obtained in ��� ����

The next theorem follows from the su�cient conditions of stability of homogeneous

polynomial systems ����

Theorem 5.2. Let A = −AT ,

Φ(x̃, h(x̃)) = Φ�(x̃) +O(|x̃|���),
G̃(x̃, ỹ) = G̃�(x̃, ỹ) +O((|x̃|+ |ỹ|)���),

where Φ� ∈ ℘�, G̃� ∈ ℘� and ℘�, ℘� are defined in Section 3. Suppose further
θ � 2η + 1 and

{
x̃ ∈ Sm−� ; 〈x̃, G̃�(x̃, 0)〉 = 0

}
⊂
{
x ∈ Sm−� ; 〈x,Φ�(x̃)〉 < 0

}
,

where Sm−� is the (m − 1)-dimensional unit sphere. Then there exists γ > 0 such
that the feedback

u(x̃) = −γ
〈
x̃, G̃�(x̃, 0)

〉
|x̃|�−��−�

stabilizes the system (27).

Proof� Consider the system ���� closed by u(x̃) = −γ
〈
x̃, G̃�(x̃, 0)

〉
|x̃|�−��−�.

Having applied Theorem ��� we obtain the existence of the center manifold y = H(x̃)

for the closed loop system� Hence the feedback stabilizes the system ����� i� the zero

solution of the system

d

dt
x̃ = Ax̃+Φ(x̃, h(x̃))− G̃(x̃,H(x̃)) · γ

〈
x̃, G̃�(x̃, 0)

〉
|x̃|�−��−�

is asymptotically stable� Take Liapunov�s function V (x̃) = �
� |x̃|�. Then

����
d

dt
V (x̃) = 〈x̃,Φ�(x̃)〉 − γ

(
〈x̃, G̃�(x̃, 0)〉

)� · |x̃|�−��−� +O(|x̃|���).

According to the result of ���� there exists γ > 0 such that

〈x̃,Φ�(x̃)〉 < γ
(
〈x̃, G̃�(x̃, 0)〉

)�|x̃|�−��−� ∀x̃ 
= 0.

Thus the statement of the theorem follows from ����� �
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Now we formulate su�cient conditions for local stabilizability of the bilinear sys�

tem

����
ẋ = Ax+ (V��x+ V��y)v,

ẏ = By + (q + V��x+ V��y)v,

where the control value v ∈ R� q ∈ R
n� the system

ẏ = By + q · v

is stabilizable and A, {Vij}�i�j�� are de�ned in Example ����

We will design the stabilizing feedback in the form

���� v = 〈k, y〉+ u(x, y)

with u(0, 0) = 0� du(0, 0) = 0 and with k ∈ R
n such that all eigenvalues of B =

B + q · k have negative real parts�
Substituting ���� in ���� we obtain

��	�
ẋ = Ax+ (V��x+ V��y) · 〈k, y〉+ (V��x+ V��y) · u,
ẏ = By + (V��x+ V��y) · 〈k, y〉+ (q + V��x+ V��y) · u.

Theorem 5.3. If A = −AT and

���� 〈x, V��x〉+
∫ ∞

�

〈eA�x, V��eA�x〉〈k, eB�q〉dτ = 0

implies x = 0, then the system ���� is stabilized by the feedback

���� v = 〈k, y〉 − 〈x, V��x〉 −
∫ ∞

�

〈eA�x, V��eA�x〉〈k, eB�q〉dτ.

Proof� It is easy to see that for the system ��	� with u = 0 we have h(x) = 0

and Φ(x, h(x)) = 0. The decoupling normalizing transformation is of the form

����
x̃ = x+ ν(x, y),

ỹ = y,

where

ν =

∫ ∞

�

e−A� (V��e
A�x+ V��e

b�y)〈k, eB�y〉dτ +O((|x|+ |y|�) · |y|)
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as was calculated in Example ����

Under the normalizing transformation ���� the system ��	� has the form

��
�
˙̃x = Ax̃+ G̃(x̃, ỹ) · u,
˙̃y = Bỹ + Ψ̃(x̃, ỹ) + (q + Q̃(x̃, ỹ)) · u,

where Ψ̃� Q̃ are analogous to the corresponding functions in �����

Consider the system ��
� closed by

���� u(x) = −〈x, V��x〉 −
∫ ∞

�

〈eA�x, V��eA�x〉〈k, eB�q〉dτ

where (x, y) and (x̃, ỹ) are connected by the transformation ����� Then using Theo�

rem ��� we obtain for the system ��
� closed by ���� the center manifold ỹ = H(x̃)�

Hence to prove the theorem we need to investigate the local behavior of the system

�	��
d

dt
x̃ = Ax̃+ G̃(x̃,H(x̃)) · u(x),

where x = x̃− ν(x,H(x̃)). Take Liapunov�s function V (x̃) = �
� |x̃|�. Then

d

dt
V (x̃) =

〈
x̃, G̃(x̃,H(x̃))

〉
· u(x).

However�

〈
x̃, G̃(x̃,H(x̃))

〉
= 〈x̃, V��x̃〉+

∫ ∞

�

〈eA� x̃, V��eA� x̃〉 · 〈k, eB�q〉dτ +O(|x̃|
),

u(x) = −〈x̃, V��x̃〉 −
∫ ∞

�

〈eA� x̃, V��eA� x̃〉〈k, eB�q〉dτ +O(|x̃|
).

Therefore

d

dt
V (x̃) = −

(
〈x̃, V��x̃〉+

∫ ∞

�

〈eA� x̃, V��eA� x̃〉〈k, eB�q〉dτ
)�
+O(|x̃|�)

and due to the condition ���� this means asymptotic stability of the zero solution of

�	��� Hence the zero solution of the system ���� which is closed by the feedback ����

is also asymptotically stable� �
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