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The concept of a semiloop was introduced in ���� An algebra A = (A, \, ·, e) of
type (2, 2, 0) is called a semiloop if it satis�es the identitites

x \ x = e,
x · (x \ y) = y,
x \ (x · y) = y.

In other words� semiloops are just right uniquely divisible groupoids with a right

unit e� Of course� there exist semiloops which are not loops� see ���� It was also

shown that the variety S of all semiloops is congruence�permutable and congruence

regular�

The concept of an ideal in an algebra with a nullary operation e was introduced

in �	� and intensively studied by A� Ursini and H� P� Gumm in �
�� Recall that

an (n + m)�ary term p(x�, . . . , xn, y�, . . . , ym) of an algebra A with a nullary op�

eration e is called an ideal term in y�, . . . , ym if p(x�, . . . , xn, e, . . . , e) = e is an

identity in A� A subset I of A is called an ideal of A if for any ideal term

p(x�, . . . , xn, y�, . . . , ym) in y�, . . . , ym and for every a�, . . . , an ∈ A, b�, . . . , bm ∈ I
we have p(a�, . . . , an, b�, . . . , bm) ∈ I� An algebra A is said to be ideal determined if
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every ideal I of A is a kernel of a unique conguence ΘI ∈ ConA� i�e� I = [e]�I � A

variety V is called ideal determined if each A ∈ V has this property�

Let us remark that for any Θ ∈ ConA� [e]� is an ideal of A� Moreover� the set of

all ideal terms of A forms a clone IT(A)� We have either IT(A) = {e}� the trivial

case� or IT(A) is in�nite� If the clone IT(A) has a �nite base� A is said to have a

good theory of ideals� see �	��

It was also shown in ��� that every semiloop is ideal determined and has a good

theory of ideals� Moreover� ��� contains the explicit description of the 	�element base

of IT(A) for A ∈ S�
However� some considerations on groupoids have suggested that some properties

of semiloops are super�uous for such a good congruence and ideal properties� So

we try to weaken the properties of semiloops to obtain a simpler case of groupoids

which still satisfy these conditions� Our work can be regarded as a way to obtain

the essence of congruence and ideal properties�

Definition. Let A = (A, \, ·, e) be an algebra of type (2, 2, 0)� A is called a left

divisible involutory groupoid if the following identities hold in A�

x · (x \ y) = y,
x \ x = e.

Evidently� every loop or semiloop is a left divisible involutory groupoid but not

vice versa� Denote by LDIG the variety of all left divisible involutory groupoids�

Now we can list some important congruence properties of varieties of LDIG� Recall

that an algebra A with a nullary operation e is called e�regular if Θ = Φ for each

Θ,Φ ∈ ConA whenever [e]� = [e]�� A is called e�permutable if [e]�◦� = [e]�◦� for

each Θ,Φ ∈ ConA�

In �
� it has been proved that a variety V with a nullary operation e is ideal

determined if and only if it is e�regular and e�permutable�

Proposition 1. The variety of all LDIG is e-permutable and e-regular, so it is

ideal determined.

Proof� It is a straightforward consequence of ideal determination of the variety

of all semiloops� �

In what follows we will give an explicit construction of the congruence ΘH corre�

sponding to an ideal H and list the basis of the clone IT�LDIG�� For A ∈ LDIG and

∅ �= B� C ⊆ A denote

B · C = {b · c ; b ∈ B, c ∈ C} and B \ C = {b \ c ; b ∈ B, c ∈ C}.
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If e�g� B = {b} is a one�element set� then we will write brie�y b ·C instead of {b} ·C�
etc�

Lemma 1. Let Θ be na equivalence on an algebra A ∈ LDIG. Then Θ is a
congruence iff [a]� · [b]� ⊆ [a · b]� and [a]� \ [b]� ⊆ [a \ b]� for every a, b ∈ A.

Proof� The conditions are nothing else than the substitution property of the

relation Θ� �

Theorem 1. Let ∅ �= H ⊆ A for A ∈ LDIG. Then the following conditions are
equivalent:

��� the relation ΘH defined by 〈x, y〉 ∈ ΘH iff x ·H = y · H is a congruence with
the kernel H;

��� H is a subalgebra of A satisfying the conditions

(x · y) \ [(x ·H) · (y ·H)] ⊆ H and (x \ y) \ [(x ·H) \ (y ·H)] ⊆ H.

Proof� (1)⇒ (2)� Evidently� ΘH is a congruence with classes x ·H for x ∈ A�
Then by Lemma � we obtain

(x ·H) · (y ·H) ⊆ (x · y) ·H and (x ·H) \ (y ·H) ⊆ (x \ y) ·H.

The former inclusion gives

(x · y) \ [(x ·H) · (y ·H)] ⊆ (x · y) \ [(x · y) ·H].

If z ∈ (x · y) ·H� then (z, x · y) ∈ ΘH and so

((x · y) \ z, (x · y) \ (x · y)) = ((x · y) \ z, e) ∈ ΘH ,

i�e� (x · y) \ z ∈ [e]�H = e ·H = H �since H is the kernel of ΘH��

We have proved (x · y) \ [(x · H) · (y · H)] ⊆ H� Analogously� the inclusion

(x ·H) \ (y ·H) ⊆ (x \ y) ·H implies (x \ y) \ [(x ·H) \ (y ·H)] ⊆ (x \ y) \ [(x \ y) ·H]�
If z ∈ (x \ y) ·H� then (z, x \ y) ∈ ΘH � so

((x \ y) \ z, (x \ y) \ (x \ y)) = ((x \ y) \ z, e) ∈ ΘH , i�e� (x \ y) \ z ∈ [e]�H = H,

which proves (x \ y) \ [(x ·H) \ (y ·H)] ⊆ H�
(2) ⇒ (1)� Suppose z ∈ (x · H) · (y · H)� Then by the conditions ��� we have

(x · y) \ z = h ∈ H� From this we conclude

(x · y) · ((x · y) \ z) = z = (x · y) · h ∈ (x · y) ·H,
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i�e� (x·H)·(y·H) ⊆ (x·y)·H� Analogously� if z ∈ (x·H)\(y·H)� then (x\y)\z = h ∈ H�
which yields

z = (x \ y) · h ∈ (x \ y) ·H.

We have proved (x ·H) \ (y ·H) ⊆ (x \ y) ·H� so by Lemma � the relation ΘH is a

congruence�

It su�ces to show e ·H = [e]�H = H� Since H is a subalgebra of A� e ·H ⊆ H�
Conversely� let h ∈ H� Then there exists an element a ∈ S with e · a = h �e�g� a =
e \ h�� But then e, h ∈ H implies a = e \ h ∈ H� which proves h ∈ e · H and

e ·H ⊆ H� �

Theorem 2. Let A ∈LDIG and ∅ �= I ⊆ A. Then the following conditions are
equivalent:

(1) I is an ideal of A;
(2) I is closed under the following ideal terms:

p�(y�, y�) = y� · y�,
p�(y�, y�) = y� \ y�,
p�(x�, x�, y�, y�) = (x� · x�) \ [(x� · y�) · (x� · y�)],
p�(x�, x�, y�, y�) = (x� \ x�) \ [(x� · y�) \ (x� · y�)].

Proof� (1)⇒ (2) is evident�
(2) ⇒ (1)� By Theorem � it su�ces to show that if I is closed under the terms

p�� p�� p�� p� then I is a subalgebra of A with (x · y) \ [(x · H) · (y · H)] ⊆ H and

(x\y)\ [(x ·H)\(y ·H)] ⊆ H. The terms p�� p� ensure that I is a subalgebra of A� the

term p� gives (x·y)\[(x·I)·(y ·I)] ⊆ I and the term p� gives (x\y)\[(x·I)\(y ·I)] ⊆ I�
�
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