NOTE ON FUNCTIONS SATISFYING THE INTEGRAL HÖLDER CONDITION

JOSEF KRÁL, Praha

(Received March 21, 1995)

Abstract. Given a modulus of continuity ω and $q \in [1, \infty[$ then H_q^{ω} denotes the space of all functions f with the period 1 on \mathbb{R} that are locally integrable in power q and whose integral modulus of continuity of power q (see(1)) is majorized by a multiple of ω . The moduli of continuity ω are characterized for which H_q^{ω} contains "many" functions with infinite "essential" variation on an interval of length 1.

Keywords: integral modulus of continuity, variation of a function

MSC 1991: 26A15, 26A45, 26A16

By a modulus of continuity we understand a continuous nondecreasing function $\omega \colon [0, \infty] \to [0, \infty]$ which is subadditive, i.e.

$$\omega(t_1+t_2) \leqslant \omega(t_1) + \omega(t_2), \quad t_1, t_2 \ge 0$$

and satisfies the requirements

$$\omega(0) = 0, \qquad \omega(t) > 0 \qquad \text{for } t > 0.$$

In what follows ω will always stand for a fixed modulus of continuity. If $f \colon \mathbb{R} \to \mathbb{R}^- \equiv \mathbb{R} \cup \{-\infty, \infty\}$ is a Lebesgue measurable function with period 1 and $q \ge 1$ we denote

$$\parallel f \parallel_{q} = \left[\int_{0}^{1} |f(x)|^{q} \, \mathrm{d}x \right]^{1/q}$$

and in case $\| f \|_q < \infty$ we define its modulus of continuity of power q by

(1)
$$\omega(f,t)_{q} := \sup_{|h| \leq t} \left[\int_{0}^{1} \left| f(x+h) - f(x) \right|^{q} \mathrm{d}x \right]^{1/q}.$$

Any two such functions are considered equivalent if their difference is equal to a constant function almost everywhere on \mathbb{R} . H_q^{ω} denotes the set of all such classes of mutually equivalent functions f for which there exists a $c \in [0, \infty]$ such that

$$\omega(f,t)_q \leqslant c\omega(t), \quad t > 0;$$

the least c with this property will be denoted by

$$\parallel f \parallel^{\omega}_{q} := \sup_{t>0} \omega(f,t)_{q} / \omega(t)$$

As usual, the elements of H_q^{ω} will be identified with functions (representing the whole class of mutually equivalent functions). Then H_q^{ω} is a linear space over \mathbb{R} and $\| \|_q^{\omega}$ is the norm in this factor space. The space H_q^{ω} normed by $\| \|_q^{\omega}$ is a Banach space.

Let us denote by $C_0^{(1)}$ the set of all continuously differentiable functions on \mathbb{R} vanishing outside the interval [0,1] and let us define for any $f \in H_q^{\omega}$ its essential variation on]0,1[by

$$\operatorname{var}(f) = \sup \Big\{ \int_0^1 f(x) \varphi'(x) \, \mathrm{d}x; \, \varphi \in C_0^{(1)}, |\varphi| \leqslant 1 \Big\}.$$

It is easy to see that $\operatorname{var}(f)$ does not actually depend on the choice of the representing function in the class of functions equivalent to f. It is possible to prove that $\operatorname{var}(f) < \infty$ iff there exists a g equivalent to f with a finite total variation on [0, 1]defined in the usual way as the least upper bound of all sums of the form

$$\sum_{i=1}^{n} |g(t_i) - g(t_{i-1})|,$$

where $0 = t_0 < t_1 < \ldots < t_n = 1$ ranges over all subdivisions of the interval [0, 1].

Conditions on the modulus of continuity ω sufficient for the existence of an $f \in H_q^{\omega}$ with $\operatorname{var}(f) = \infty$ have been investigated by O. Kováčik. He showed in [1] by a direct construction that

(2)
$$\sum_{n=1}^{\infty} n^{-\alpha} \omega(\frac{1}{n}) = \infty$$

with an $\alpha \in]0,1]$ represents such a sufficient condition. We shall show in this note using method of the Baire category (see [2], [3]) that this result can be sharpened.

Denoting $\omega'_+(0) := \liminf_{t\to 0} \omega(t)/t$, we shall prove that H^ω_q contains an f with $var(f) = \infty$ iff

(3)
$$\omega'_+(0) = \infty.$$

More precisely, we have the following results.

Theorem 1. If (3) holds then the set

(4)
$$\{f \in H_q^{\omega}; \operatorname{var}(f) < \infty\}$$

is of the first category in H_q^{ω} (and, consequently, its complement in H_q^{ω} is non-void); in the opposite case $\omega'_+(0) < \infty$ the set (4) coincides with the whole space H_q^{ω} .

Before going into the proof of this theorem we shall establish several simple auxiliary results.

Lemma 1. If **1** stands for the constant function equal to 1 on \mathbb{R} and, for $f \in H_q^{\omega}$,

(5)
$$m(f) = \int_0^1 f(x) \,\mathrm{d}x,$$

then

(6)
$$\|f - m(f)\mathbf{1}\|_q \leq \|f\|_q^{\omega} \left[\int_0^1 \omega(h)^q \, \mathrm{d}h\right]^{1/q}$$

Proof 1. Let f be a function with period 1 which is locally integrable in power q; using the notation (5) we have

$$\begin{split} \|f - m(f)\mathbf{1}\|_{q} &= \left[\int_{0}^{1} \left|f(x) - \int_{0}^{1} f(t) \,\mathrm{d}t\right|^{q} \,\mathrm{d}x\right]^{1/q} \\ &= \left[\int_{0}^{1} \left|\int_{0}^{1} [f(x) - f(t)] \,\mathrm{d}t\right|^{q} \,\mathrm{d}x\right]^{1/q} \\ &\leqslant \left[\int_{0}^{1} \int_{0}^{1} |f(x) - f(t)|^{q} \,\mathrm{d}t \,\mathrm{d}x\right]^{1/q} \\ &= \left[\int_{0}^{1} \int_{0}^{1} |f(t+h) - f(t)|^{q} \,\mathrm{d}h \,\mathrm{d}t\right]^{1/q} \\ &\leqslant \left[\int_{0}^{1} \left[\omega(f,h)_{q}\right]^{q} \,\mathrm{d}h\right]^{1/q}. \end{split}$$

If $f \in H_q^{\omega}$ then the inequality $\omega(f,h)_q \leq ||f||_q^{\omega}\omega(h)$ implies (6).

Lemma 2. The function var: $f \to var(f)$ is lower semicontinuous on the space H_q^{ω} .

Proof 2. Let $\{f_n\}_{n=1}^{\infty}$ be an arbitrary sequence of functions in H_q^{ω} converging to $f_0 \in H_q^{\omega}$ with respect to the norm $\| \dots \|_q^{\omega}$.

We wish to verify that

(7)
$$\operatorname{var}(f_0) \leq \liminf_{n \to \infty} \operatorname{var}(f_n)$$

To this purpose we choose an arbitrary $c < var(f_0)$. Then there exists a $\varphi \in C_0^{(1)}$ such that $|\varphi| \leq 1$ and

$$\int_0^1 f_0(x)\varphi'(x)\,\mathrm{d}x > c.$$

Let $c_n = m(f_n) - m(f_0)$. According to Lemma 1 the functions $f_n - c_n \mathbf{1}$ converge to f_0 with respect to the norm $\| \dots \|_q$ and, consequently, also with respect to $\| \dots \|_1$.

Hence

$$\int_0^1 f_n(x)\varphi'(x) \, \mathrm{d}x = \int_0^1 [f_n(x) - c_n]\varphi'(x) \, \mathrm{d}x \to \int_0^1 f_0(x)\varphi'(x) \, \mathrm{d}x$$

as $n \to \infty$, so that

$$\operatorname{var}(f_n) \ge \int_0^1 f_n(x)\varphi'(x) \,\mathrm{d}x > c$$

for all sufficiently large n. Thus (7) is verified.

Lemma 3. For each $n \in N$ let us define the function ω_n on \mathbb{R} so that ω_n has period $\frac{1}{n}$ and

$$\omega_n(t) = \begin{cases} \omega(t) & \text{for } 0 \leqslant t \leqslant \frac{1}{2n} \\ \omega(\frac{1}{n} - t) & \text{for } \frac{1}{2n} \leqslant t \leqslant \frac{1}{n}. \end{cases}$$

Then $\omega_n \in H_q^{\omega}$, $\operatorname{var}(\omega_n) = 2n\omega(\frac{1}{2n})$ and $\|\omega_n\|_q^{\omega} \leq 1$.

Proof 3. Since ω_n is continuous and monotonous on each of the intervals $\left[\frac{k}{2n}, \frac{(k+1)}{2n}\right], 0 \leq k < 2n$, which are mapped onto an interval of length $\omega(\frac{1}{2n})$, we have $\operatorname{var}(\omega_n) = 2n\omega(\frac{1}{2n})$. We can see from the definition of ω_n that

$$\omega_n(x+h) - \omega_n(x)| \leqslant \omega(|h|)$$

for $x, h \in \mathbb{R}$, whence

$$\left[\int_0^1 |\omega_n(x+h) - \omega_n(x)|^q \,\mathrm{d}x\right]^{1/q} \leqslant \omega(|h|)$$

so that $\|\omega_n\|_q^{\omega} \leq 1$.

Now we are in a position to present the following.

Proof 4 of the Theorem 1. Assume (3) and put for $k \in N$

$$B_k = \{ f \in H_a^{\omega} ; \operatorname{var}(f) \leq k \}.$$

It follows from Lemma 2 that B_k is closed in H_q^{ω} . In order to show that B_k is nowhere dense we shall verify that for each $f_0 \in H_q^{\omega}$ and any $\varepsilon > 0$ there is an $f \in H_q^{\omega} \setminus B_k$ such that $||f - f_0||_q^{\omega} \leq \varepsilon$. If $f_0 \in H_q^{\omega} \setminus B_k$ we may, of course, choose $f = f_0$; so let $\operatorname{var}(f_0) \leq k$. Choose $n \in N$ so large that

$$2n\omega(\frac{1}{2n}) > 2\frac{k}{\epsilon}$$

and put

$$f = f_0 + \varepsilon \omega_n.$$

According to Lemma 3 we have $||f - f_0||_q^{\omega} \leq \varepsilon$ and $\operatorname{var}(f) \geq \varepsilon \operatorname{var}(\omega_n) - \operatorname{var}(f_0) > \varepsilon 2n\omega(\frac{1}{2n}) - k > k$, so that $f \in H_q^{\omega} \setminus B_k$ as required. Hence $\bigcup_{k \in N} B_k$ coinciding with

(4) is of the first category in H_q^{ω} .

Conversely, let now

(8)
$$\omega'_+(0) < \infty.$$

Since ω is a modulus of continuity we have then

$$\sup_{t>0}\omega(t)/t\leqslant 2\omega'_+(0),$$

which follows e.g. from the inequality (6) in Section 3.2.4. in [4]. If $\varphi \in C_0^{(1)}$ then

$$[\varphi(x+h) - \varphi(x)]/h \to \varphi'(x)$$

uniformly with respect to $x \in \mathbb{R}$ as $h \to 0$. Choosing an arbitrary $f \in H_q^{\omega}$ we have then

$$\int_0^1 f(x)\varphi'(x) \,\mathrm{d}x = \lim_{h \downarrow 0} \int_0^1 f(x)[\varphi(x+h) - \varphi(x)]/h \,\mathrm{d}x$$
$$= \lim_{h \downarrow 0} h^{-1} \int_0^1 [f(x-h) - f(x)]\varphi(x) \,\mathrm{d}x$$
$$\leqslant \sup_{h \neq 0} |h|^{-1} \omega(f, |h|)_q \left[\int_0^1 |\varphi(x)|^p \,\mathrm{d}x\right]^{1/p}$$

where p is the Hölder conjugate exponent of q (1/p + 1/q = 1). Hence we obtain

$$\operatorname{var}(f) \leq 2\omega'_{+}(0) \|f\|_{q}^{\omega} < \infty.$$

We observe that in this case (4) coincides with the whole space H_q^{ω} .

267

Remark 1. It follows from the above proof that, under the condition (8), the natural embedding of H_q^{ω} into the factor space (modulo constant functions) of periodic functions with $\operatorname{var}(f) < \infty$ (normed by $\operatorname{var}(\ldots)$) is continuous; in the case $\omega(t) = t$ and q = 1 these spaces can be identified (cf. [5]). In case q > 1 and $\omega'_+(0) < \infty$ the reasoning from the end of the previous proof implies continuity of the natural embedding of H_q^{ω} into the factor space (modulo constant functions) formed by periodic functions that are absolutely continuous and satisfy

$$\infty > \left[\int_0^1 |f'(x)|^q \, \mathrm{d}x \right]^{1/q} \equiv \sup \left\{ \int_0^1 f(x) \varphi'(x) \, \mathrm{d}x; \, \varphi \in C_0^{(1)}, \int_0^1 |\varphi(x)|^p \, \mathrm{d}x \leqslant 1 \right\};$$

the norm in this space is given by $||f'||_q$ (cf. [4], 3.12.13).

Remark 2. The theorem established above holds also for $q = \infty$ provided the expressions of the form $\left[\int_0^1 |f(x)|^q dx\right]^{1/q}$ occurring in the construction of H_q^{ω} are replaced by the essential norm formed by $\inf\{\alpha \ge 0; \max(\{x; |f(x)| \ge \alpha\}) = 0\}$, where meas (\ldots) is the Lebesgue measure on the real line.

References

- O. Kováčik: A necessary condition of embedding of H^ω_p into the space of functions with bounded variations. Izvestija vysšich učebnych zaveděnij Matematika 10 (1983), 26–28. (In Russian.)
- W. Orlicz: Application of Baire's category method to certain problems of mathematical analysis. Wiadomości Matematyczne XXIV (1982), 1–15. (In Polish.)
- [3] J. C. Oxtoby: Mass und Kategorie. Springer-Verlag, 1971.
- [4] A. F. Timan: Theory of Approximation of function of Real Variable. Moskva, 1960. (In Russian.)
- [5] G. H. Hardy, J. E. Littlewood: Some properties of fractional integrals I, II. Math. Z. 27 (1928), 565-606; 34 (1932), 403-439.

Author's address: Josef Král, Palackého 500, 28911 Pečky, Czech Republic.