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Abstract. For a nontrivial connected graph G, let c : V (G)→ N be a vertex coloring of G
where adjacent vertices may be colored the same. For a vertex v ∈ V (G), the neighborhood
color set NC(v) is the set of colors of the neighbors of v. The coloring c is called a set
coloring if NC(u) 6= NC(v) for every pair u, v of adjacent vertices of G. The minimum
number of colors required of such a coloring is called the set chromatic number χs(G).
We show that the decision variant of determining χs(G) is NP-complete in the general
case, and show that χs(G) can be efficiently calculated when G is a threshold graph. We
study the difference χ(G) − χs(G), presenting new bounds that are sharp for all graphs G

satisfying χ(G) = ω(G). We finally present results of the Nordhaus-Gaddum type, giving
sharp bounds on the sum and product of χs(G) and χs(G).
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1. Introduction

In previous work, Chartrand, Okamoto, Rasmussen, and Zhang [2] introduced

a vertex coloring called a set coloring. We first define

Nk = {1, 2, . . . , k}

for each positive integer k. Then, for a nontrivial connected graph G, let c : V (G) →
Nk be a vertex coloring of G where adjacent vertices may be colored the same. For

a set S ⊆ V (G), define the set c(S) of colors of S by

c(S) = {c(v) : v ∈ S}.

For a vertex v in a graph G, let N(v) be the neighborhood of v (the set of all vertices

adjacent to v in G). The neighborhood color set NC(v) = c(N(v)) is the set of colors
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of the neighbors of v. The coloring c is called set neighbor-distinguishing, or simply

a set coloring, if NC(u) 6= NC(v) for every pair u, v of adjacent vertices of G.

The minimum number of colors required of such a coloring is called the set chro-

matic number of G and is denoted by χs(G). In this paper we establish the NP-

completeness of determining the set chromatic number and initiate the search for

classes of graphs for which the set chromatic number can be found efficiently, and

in so doing we bring perfect graphs into the discussion. It was reported in [2] that

χs(G) 6 χ(G) for every graph G. Here we continue to explore the relationship be-

tween these two parameters. In particular, we present new bounds that are sharp for

graphs G satisfying χ(G) = ω(G), and consequently for all perfect graphs. We show

that finding the set chromatic number is apparently hard even for several classes

of perfect graphs for which the chromatic number problem is easy, and prove that

the set chromatic number can nevertheless be found in polynomial time for thresh-

old graphs. We finally present results of the Nordhaus-Gaddum type, giving sharp

bounds on the sum and product of χs(G) and χs(G) and providing realization results.

2. NP-completeness of the set chromatic number

From a result in [2], we know that χs(G) = 2 if and only if G is bipartite and so

χs(G) = χ(G) for every bipartite graph. Since bipartite graphs can be recognized

in polynomial time, it follows that then χs(G) can be computed in polynomial time

for bipartite graphs G. We are concerned in this section with the identification of

additional classes of graphs for which the set chromatic number can be computed

efficiently. This, of course, is of no particular interest if computation of the set

chromatic number is sufficiently hard. In [2] it was shown that not only is the set

chromatic number bounded above by the chromatic number but that the difference

between the set chromatic and chromatic numbers can be arbitrarily large. The

perceived difficulty of finding the set chromatic number suggests that computation

of the set chromatic number is no less complex than that of the chromatic number,

and we prove here that this is the case. We first state the decision variant of the

optimization problem set chromatic number, which we call graph set k-colorability.

I n s t a n c e. A graph G = (V, E), and k ∈ Z
+.

Q u e s t i o n. Does there exist a mapping c : V → Nk with the property that c is

a set k-coloring of G, i.e., a labeling such that for every edge e = uv ∈ E the sets

NC(u) and NC(v) of colors assigned by c are distinct?

The theorem itself follows from viewing k-colorability as a restricted case of set

k-colorability.
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Theorem 2.1. Graph set k-colorability is NP-complete.

P r o o f. We know that every instance of graph set k-colorability (GSkC) can

be regarded as an instance of graph k-colorability in which the labeling c is itself

a proper coloring. It follows that the proper k-colorings of an instance (G, k) of

graph k-colorability are in one-to-one correspondence with the set k-colorings of G

that satisfy this additional restriction. Since every instance of the restricted version

of GSkC is an instance of graph k-colorability, the transformation required is trivial.

�

In the literature on graph algorithms, perfect graphs occupy a place of distinction.

Recall that a graph G is perfect if χ(H) = ω(H) for all induced subgraphs H of G.

The bipartite graphs constitute only one of the many classes of perfect graphs. For

a comprehensive introduction to perfect graphs, their characterizations, and key

results on the computational properties of various subclasses, see Golumbic [6]. The

chromatic number χ(G) is computable in polynomial time for many classes of perfect

graphs. If G is a member of such a class, and if it can be shown that χs(G) = χ(G)

for every member of the class, then χs(G) can be efficiently computed for every graph

in the class by the use of an off-the-shelf algorithm for computing χ(G).

Intuitively, computation of χs(G) is harder than computation of χ(G), so it should

come as no surprise that there are perfect classes to which the preceding remark

does not apply in general. We illustrate this with a member of two such classes, the

chordal graphs and the split graphs. Recall that a graph G is chordal if G contains

no induced k-cycle for k > 3, and G is a split graph if V (G) can be partitioned into

an independent set S and a set K that induces a clique. It is not difficult to see that

every split graph is chordal. The graph G in Figure 1 is a split graph, whose vertex

labels represent a set 3-coloring c, demonstrating that χs(G) < χ(G) = 4.

1 1

11

2 3 3

2

Figure 1. Split graph G, with χs(G) = 3 < 4 = χ(G).

Nevertheless, we can provide one nontrivial example of a class of perfect graphs

for which the chromatic number can be computed in polynomial time and possessing

the additional property that χs(G) = χ(G) for every member of the class. Properly

contained within the split graphs are the threshold graphs. The following character-

ization is due to Chvátal and Hammer [4]. Let δ0 = 0, and let δ1 < δ2 < . . . < δk be

63



the distinct positive vertex degrees found in G. For each i, where 0 6 i 6 k, define

Vi = {v ∈ V : deg(v) = δi}. Then G is a threshold graph if and only if for all u ∈ Vi

and v ∈ Vj , uv ∈ E if and only if i + j > k. The following consequence will be useful

to us: if u ∈ Vi, v ∈ Vj , and i 6 j, then N(u) − {v} ⊆ N(v) − {u}, with equality if
and only if i = j.

For an example, see Figure 2, in which δi = i for 1 6 i 6 6, V1 = {v7}, V2 = {v6},
V3 = {v4, v5}, V4 = {v3}, V5 = {v2}, and V6 = {v1}. The threshold in this example
is t = 6. Note that the mapping c : V (G) → N4 in Figure 2 is both a proper coloring

and a set 4-coloring of G.

v2 v4

v1

v3

v5

v6

v7

G:
c = {(v1, 1), (v2, 2), (v3, 3),

(v4, 4), (v5, 4), (v6, 3), (v7, 2)}

Figure 2. A threshold graph G, with t = 6 and χs(G) = 4 = χ(G), and a coloring c that is
both proper and a set 4-coloring.

Theorem 2.2. For every threshold graph G, χs(G) = χ(G).

P r o o f. Suppose that G = (V, E) is a threshold graph. Since we already know

that χs(G) 6 χ(G), we need only to show that χs(G) > χ(G). Since G is a split

graph, V can be partitioned as V = {K, S}, where K induces a largest clique and

S is an independent set. Since G is perfect, χ(G) = ω(G) = |K|. Let |K| = k

and assume, to the contrary, that there exists a set coloring c : V → Nk−1. Since c

uses fewer than k colors, there exists a nonempty subset X of K such that for each

vertex v ∈ K, v belongs to X if and only if there exists a vertex w ∈ K − {v} with
c(v) = c(w). Let X = {x1, x2, . . . , xl}, where deg x1 6 deg x2 6 . . . 6 deg xl, and

observe that 2 6 l 6 k and |c(K)| > k − l + 1.

Since c(K) ⊆ NC(x) ⊆ Nk−1 for every x ∈ X and no two vertices in X have the

same neighborhood color set, it follows that N(x) ∩ S 6= N(y) ∩ S for every two

vertices x, y ∈ X . Therefore, N(x)−{y} 6= N(y)−{x}, that is, no two vertices in X

have the same degree and so N(xi) ∩ S ⊂ N(xj) ∩ S if i < j. This in turn implies

that

c(K) ⊆ NC(x1) ⊂ NC(x2) ⊂ . . . ⊂ NC(xl) ⊆ Nk−1,

which is impossible since |c(K)| > k − l + 1. Hence, such a set coloring c does not

exist and so χs(G) > k = χ(G). �

By Hammer and Simeone [7], if G is a split graph, then ω(G) can be found in

polynomial time. Since split graphs are perfect, and since every threshold graph is
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a split graph, it follows from Theorem 2.2 that χs(G) can be computed in polynomial

time on threshold graphs.

3. Bounds for the set chromatic number in terms of

the chromatic number in perfect graphs

In this section we present bounds for χs(G) in terms of χ(G) in perfect graphs.

We first summarize some results presented in [2]. For integers a and b with a < b,

let

[a . . b] = {x ∈ Z : a 6 x 6 b}.
In particular, [1 . . b] = Nb.

O b s e r v a t i o n 3.1 ([2]). If u and v are two adjacent vertices in a graph G

such that N(u) − {v} = N(v) − {u}, then c(u) 6= c(v) for every set coloring c of G.

Furthermore, if S = N(u) − {v} = N(v) − {u}, then {c(u), c(v)} 6⊆ c(S).

Theorem 3.1 ([2]). For every graph G,

(3.1) χs(G) > 1 + ⌈log2 ω(G)⌉ .

Observe that Theorem 3.1 gives us the following: If G is a graph with χs(G) =

a > 2, then ω(G) 6 2a−1.

As an immediate corollary of Theorem 3.1 we have the following result for graphs

satisfying χ(G) = ω(G).

Corollary 3.1. Let G be a graph satisfying χ(G) = ω(G). If χs(G) = a > 2,

then χ(G) 6 2a−1.

Note that Corollary 3.1 applies to the entire class of perfect graphs. The following

realization result summarizes the pairs (a, b) for which there exist perfect graphs G

satisfying χs(G) = a and χ(G) = b, establishing the sharpness of the bound given

in Corollary 3.1.

Theorem 3.2. For each pair a, b of integers with 2 6 a 6 b 6 2a−1, there exists

a perfect graph G with χs(G) = a and χ(G) = b.

P r o o f. If a = b, then χs(Kb) = χ(Kb) = b. Hence we may assume that 3 6

a < b 6 2a−1. Consider the real-valued function fa : [1, a− 1] → [a, 2a−1] defined by

fa(x) = 2x−x+a−1. Note that fa is strictly increasing on [1, a−1]. Consequently,

there exists an integer p ∈ [2, a − 1] such that

a = fa(1) 6 fa(p − 1) < b 6 fa(p) 6 fa(a − 1) = 2a−1
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and so

2p−1 + a − p + 1 6 b 6 2p + a − p − 1.

Let S1, S2, . . . , S2p be the 2p subsets of Np, where |S1| 6 |S2| 6 . . . 6 |S2p |. (Hence
S1 = ∅ and S2p = Np.)

Suppose first that p = a − 1. Let U = {u1, u2, . . . , ub} be the vertex set of a
complete graph Kb. A graph G is constructed from Kb by adding the vertices in the

set X = {x1, x2, . . . , xp} and joining xi to uj if and only if i ∈ Sj for 1 6 i 6 p and

2 6 j 6 b (6 2a−1). Thus χ(G) = b, while χs(G) > a by Theorem 3.1. On the other

hand, the coloring that assigns the color a to every vertex in U and the color i to

the vertex xi for 1 6 i 6 a − 1 is a set a-coloring of G. Therefore, χs(G) = a.

We now assume that p 6 a − 2. Let the vertex set of a complete graph Kb be

partitioned into two sets U and W , where U = {u1, u2, . . . , ub−a+p+1} and W =

{w1, w2, . . . , wa−p−1}. We construct a graph G from Kb by adding the vertices in

the set X = {x1, x2, . . . , xp} and joining xi to uj if and only if i ∈ Sj for 1 6 i 6 p

and 1 6 j 6 b − a + p + 1 (6 2p).

By Observation 3.1, every set coloring must assign a distinct color to each of the

a − p vertices in W ∪ {u1}. Assume, to the contrary, that there exists a set (a − 1)-

coloring of G that uses the colors in Na−1. Without loss of generality, suppose

that c(W ∪ {u1}) = Na−p. Then Na−p ⊆ NC(v) for every vertex v in U − {u1}.
However, there are only 2p−1 subsets of Na−1 that contain Na−p as a subset, while

|U − {u1}| = b − a + p > 2p−1. This is impossible. Therefore, χs(G) > a. To verify

that χs(G) 6 a, consider the a-coloring c : V (G) → Na defined by

c(v) =











i if v = xi (1 6 i 6 p),

p + 1 if v ∈ U,

p + 1 + i if v = wi (1 6 i 6 a − p − 1)

and observe that this is a set coloring of G. Therefore, χs(G) = a. �

In each of the preceding cases, the graph G is a split graph and is consequently

perfect.

We conclude this section with the following conjecture, which, if true, would gen-

eralize Corollary 3.1.

Conjecture 3.1. Let G be a connected graph. If χs(G) = a > 2, then χ(G) 6

2a−1.

Note that if this generalization holds, then the condition that G is perfect can be

dropped from Theorem 3.2 and the construction used in the proof can be employed

without alteration.
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4. Nordhaus-Gaddum type inequalities

We now leave the perfect graphs behind and turn our attention to Nordhaus-

Gaddum type inequalities. The proof of Lemma 4.1 is adapted from the proof of the

analogous result for chromatic number by Chartrand and Polimeni [3]. The proof

of Theorem 4.1 is adapted from the proof by H.V. Kronk (see [1]) of the Nordhaus-

Gaddum result for chromatic number.

Lemma 4.1. Let G be a graph of order n, with complement G. Then χs(G)×
χs(G) > n.

P r o o f. Let c and c be a χs(G)-coloring of G and a χs(G)-coloring of G, re-

spectively. Assign the color (ai, bi) to vertex vi ∈ V (Kn), where ci is the color

assigned to vi in G and bi is the color assigned to vi in G for 1 6 i 6 n. We then

define the neighborhood color set of vi in Kn as the set of ordered pairs given by

NC(vi) = {(aj , bj) : vj ∈ V (Kn)}. This forms a set coloring of Kn with at most

χs(G) · χs(G) colors. Since χs(Kn) = n, the result follows. �

Theorem 4.1. If a graph G has order n, then we have the following bounds:

(a) 2
√

n 6 χs(G) + χs(G) 6 n + 1, and

(b) n 6 χs(G) · χs(G) 6
(

1

2
(n + 1)

)2
.

P r o o f. The lower bound in (b) follows from Lemma 4.1. Also, since the arith-

metic mean of two positive numbers is at least as large as their geometric mean, it

follows that
√

χs(G) · χs(G) 6
χs(G) + χs(G)

2

and so the lower bound in (a) follows. The upper bounds in both (a) and (b) are

straightforward results of the Nordhaus-Gaddum inequalities [8] for the chromatic

numbers of a graph and its complement and of the fact that χs(G) 6 χ(G). �

Sharpness of the bounds will follow from Proposition 4.4. For the chromatic

number, Stewart [9] and Finck [5] showed that no improvement in the Nordhaus-

Gaddum Theorem is possible (without employing additional conditions). We state

this theorem as follows.

Theorem 4.2 ([5], [9]). Let n be a positive integer. For every two integers a and

b such that 2
√

n 6 a + b 6 n + 1 and n 6 ab 6
(

1

2
(n + 1)

)2
, there is a graph G of

order n such that χ(G) = a and χ(G) = b.
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We now present the analogue of Theorem 4.2 for set colorings, providing realization

results for Theorem 4.1.

Proposition 4.1. Let n be a positive integer. For every two integers a and b

such that 2
√

n 6 a + b 6 n + 1 and n 6 ab 6
(

1

2
(n + 1)

)2
, there is a graph G of

order n such that χs(G) = a and χs(G) = b.

P r o o f. Since a + b − 1 6 n 6 ab, there exists a partition of n into a positive

integers n1, n2, . . . , na such that 1 6 n1 6 n2 6 . . . 6 na = b. Thus n =
a
∑

i=1

ni and

a + b − 1 6

a−1
∑

i=1

ni + na =

a
∑

i=1

ni 6 ana = ab.

Let G = Kn1,n2,...,na
. Then G = Kn1

∪ Kn2
∪ . . . ∪ Kna

. It follows that χs(G) = a,

and χs(G) = na = b. �

Note that, by the construction given in the proof of Proposition 4.4, the bounds

given in Theorem 4.1 are sharp.
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