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Abstract. Let L(H) be the algebra of all bounded linear operators on a complex Hilbert
space H. We characterize locally spectrally bounded linear maps from L(H) onto itself.
As a consequence, we describe linear maps from L(H) onto itself that compress the local
spectrum.
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1. Introduction

Throughout this paper, X will denote a complex Banach space and L(X) the

algebra of all bounded linear operators on X with identity operator I. The local

resolvent set of an operator T ∈ L(X) at a point x ∈ X , ̺T (x), is the set of all λ ∈ C

for which there exists an open neighborhood Uλ of λ in C and an analytic function

f : Uλ → X such that the equation (µ − T )f(µ) = x holds for all µ ∈ Uλ. The local

spectrum of T at x, denoted by σT (x), is given by

σT (x) := C \ ̺T (x),

and is a compact subset of σ(T ). The local spectral radius of T at x is defined by

rT (x) := lim sup
n→+∞

‖T nx‖1/n,

and coincides with the maximum modulus of σT (x) provided that T has the single-

valued extension property. Recall that T is said to have the single-valued extension

property if for every open set U of C, the equation

(T − λ)ϕ(λ) = 0 (λ ∈ U),
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has no nontrivial analytic solution on U . Evidently, every operator T ∈ L(X)

with empty interior point spectrum enjoys this property. Our references on local

spectral theory are the remarkable books of P.Aiena [1] and of K. Laursen and

M.Neumann [11].

We will say that a linear map ϕ : L(X) → L(X) is locally spectrally bounded at

a fixed nonzero vector e ∈ X if there is a positive constant M such that rϕ(T )(e) 6

MrT (e) for all T ∈ L(X). When X is an infinite dimensional Hilbert space, we prove

the following.

Theorem 1.1. Let H be an infinite dimensional Hilbert space and let e be a fixed

nonzero vector in H. A continuous surjective linear map ϕ : L(H) → L(H) is locally

spectrally bounded at e if and only if there are a nonzero scalar c and an invertible

operator A ∈ L(H) such that Ae = e, and ϕ(T ) = cATA−1 for all T ∈ L(H).

This theorem is an extension of the result due to Bračič and Müller [7, Theo-

rems 3.3 and 3.4], where they characterized continuous surjective linear maps from

L(X) into itself that preserve the local spectrum (local spectral radius) at a fixed

vector in X .

The following results show, unlike in the infinite dimensional case, that the addi-

tional assumption of continuity on ϕ can be omitted, and extend the main results

from [4], [6], [9] to this more general scope.

Theorem 1.2. Let n > 3 be a positive integer and let e ∈ C
n be a fixed nonzero

vector. Let ϕ : Mn(C) → Mn(C) be a surjective linear map. If ϕ is locally spectrally

bounded at e, then there exist a nonzero scalar c and matrices A, S ∈ Mn(C) with

A invertible and Ae = Se = e such that either ϕ(T ) = cATA−1 + c(S − I) tr(T/n)

or ϕ(T ) = cAT trA−1 + c(S − I) tr(T/n) for all T ∈ Mn(C). Here tr(·) denotes the

usual trace function on Mn(C) and T tr is the transpose of the matrix T .

Corollary 1.3. Let n > 3 be a positive integer and let e ∈ C
n be a fixed nonzero

vector. Let ϕ : Mn(C) → Mn(C) be a surjective linear map such that ϕ(I) and I

are linearly dependent. Then the map ϕ is locally spectrally bounded at e if, and

only if, there are a nonzero scalar c and an invertible matrix A ∈ Mn(C) such that

Ae = e and ϕ(T ) = cATA−1 for all T ∈ Mn(C).
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2. Proof of the main results

We first fix some notation. The duality between the Banach spaces X and its dual

X∗ will be denoted by 〈·, ·〉. For x ∈ X and f ∈ X∗, as usual we denote by x⊗ f the

rank at most one operator on X given by z 7→ 〈z, f〉x. For T ∈ L(X) we will denote

by ker(T ), T ∗, σ(T ), σsu(T ), and r(T ), the null space, the adjoint, the spectrum, the

surjectivity spectrum, and the spectral radius of T ; respectively.

The proof of our results uses several auxiliary lemmas. The first is quoted in [3,

lemma 2.1]. It concerns spectrally bounded linear maps from a purely infinite C∗-

algebra with real rank zero onto a semi-simple Banach algebra. For our purposes,

the only relevant example of an algebra having these properties is the algebra L(H)

of all bounded linear operators on an infinite-dimensional Hilbert space H.

Recall that a linear map ϕ between unital Banach algebras A and B is called

spectrally bounded if there is a positive constant M such that

r(ϕ(a)) 6 Mr(a) (a ∈ A),

where r(·) denotes the spectral radius function.

Lemma 2.1. Let H be an infinite dimensional Hilbert space and let ϕ : L(H) →

L(H) be a surjective spectrally bounded linear map. Then there exist a nonzero

scalar λ and an epimorphism or an anti-epimorphism J : L(H) → L(H) such that

ϕ(T ) = λJ(T ) for all T ∈ L(H).

A few comments must be added to this statement. In [3, lemma 2.1], λ can be

any central unitary element; however, since the centre of L(H) is trivial, λ must be

a complex number in our setting. Further, the conclusion of [3, lemma 2.1] is that J

is a Jordan epimorphism; since the algebra C(H) is prime, a well known theorem of

Herstein [10] tells us that J must be an epimorphism or an anti-epimorphism in our

setting.

The following lemma characterizes spectrally bounded linear maps from Mn(C)

onto itself.

Lemma 2.2. A surjective linear map ϕ from Mn(C) into itself is spectrally

bounded if, and only if, there exist a nonzero scalar c ∈ C and an automorphism or

an anti-automorphism ϕ on Mn(C) such that ϕ(T ) = cϕ(T ) + (ϕ(I) − cI) tr(T/n)

for all T ∈ Mn(C).

P r o o f. This is a consequence of [13, Remark 4]. �
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Lemma 2.3. Let e be a fixed nonzero vector in X , and let T ∈ L(X). If

λ ∈ σsu(T ), then for every ε > 0, there exists T ′ ∈ L(X) such that ‖T −T ′‖ < ε and

λ ∈ σT ′(e).

P r o o f. See [7, Lemma 2.2]. �

The following result is inspired by [7].

Lemma 2.4. Let e be a fixed nonzero vector in X . If ϕ : L(X) → L(X) is a

continuous surjective locally spectrally bounded linear map at e, then ϕ is spectrally

bounded.

P r o o f. Suppose that ϕ is locally spectrally bounded at e. Without loss of

generality, we can assume that rϕ(T )(e) 6 rT (e) for every T ∈ L(X), and let us

show that r(ϕ(T )) 6 r(T ) for all T ∈ L(X). To this end, let T ∈ L(X) and let

λ ∈ σ(ϕ(T )) satisfy |λ| = r(ϕ(T )), which means λ ∈ σsu(ϕ(T )). By Lemma 2.3, for

each integer n > 1 there exists an operator T ′
n in L(X) such that ‖T ′

n−ϕ(T )‖ < n−1

and λ ∈ σT ′

n

(e). Since ϕ is continuous and surjective, by the Banach open mapping

theorem there exists η > 0 such that ηB(0, 1) ⊆ ϕ(B(0, 1)), where B(0, 1) denotes

the open unit ball of L(X). Therefore, for each n there exists Tn ∈ L(X) such

that ϕ(Tn) = T ′
n and ‖Tn − T ‖ 6 η−1‖T ′

n − ϕ(T ))‖ 6 η−1n−1. Thus Tn → T and

λ ∈ σϕ(Tn)(e) for all n > 1. So, by the upper semi-continuity of the spectral radius

function, we have

r(T ) > lim sup
n→∞

r(Tn)

> lim sup
n→∞

rTn
(e)

> lim sup
n→∞

rϕ(Tn)(e)

> |λ| = r(ϕ(T )).

Hence ϕ is spectrally bounded from L(X) onto itself. �

The next lemma is simple, and its proof is straightforward. We include it for the

sake of completeness.

Lemma 2.5. Assume that X is a complex Banach space of dimension at least

two, and let e ∈ X be a nonzero vector of X . If A ∈ L(X∗, X) is a bijective operator,

then the anti-automorphism ϕ : T 7→ AT ∗A−1 is not locally spectrally bounded at e.

P r o o f. Assume, on the contrary, that ϕ is locally spectrally bounded at e, and

letM be a positive constant such that rAT∗A−1(e) 6 MrT (e) for all T ∈ L(X). Note
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that for every T ∈ L(X),

rT∗(A−1e) = lim sup
n→∞

‖T ∗nA−1e‖1/n

= lim sup
n→∞

‖A−1(AT ∗A−1)ne‖1/n

6 lim sup
n→∞

‖(AT ∗A−1)ne‖1/n = rAT∗A−1(e).

Similarly, we have rAT∗A−1(e) 6 rT∗(A−1e), and so

(2.1) rT∗(A−1e) = rAT∗A−1(e) 6 MrT (e)

for all T ∈ L(X).

Now, let x ∈ X be such that x and e are linearly independent and 〈x, A−1e〉 = 1,

and let f ∈ X∗ be such that 〈e, f〉 = 0 and 〈x, f〉 = 1. The operator T := x ⊗ f

satisfies Te = 0 and T ∗nA−1e = f for all n > 1. Hence, rT (e) = 0 and rT∗(A−1e) =

1. This contradicts the inequality (2.1) and completes the proof. �

R em a r k 2.6. Just as in the proof of the above lemma one can see that when

X = H is a Hilbert complex space and A ∈ H is a bijective operator, the anti-

automorphism ϕ : T → AT trA−1 is not locally spectrally bounded at a nonzero

fixed vector e ∈ H. Here T tr denotes the transpose of the operator T relative to a

fixed but arbitrary orthonormal basis.

Let us recall the following useful facts that will be often used in the sequel. It

is well-known that T ∈ L(X) has the single-valued extension property if, and only

if, for every λ ∈ C and every nonzero vector x in ker(λ − T ) we have σT (x) = {λ};

see [1]. Furthermore, if X = C
n is a finite dimensional space, then for every x ∈ C

n

(2.2) σT (x) =
⋃

16k6p

{λk : 1 6 k 6 p with Pk(x) 6= 0}.

Here λ1, λ2, . . . , λp are the distinct eigenvalues of T , Ek the corresponding root

spaces, and Pk : C
n → Ek (1 6 k 6 p) the canonical projections; see [5].

We now have collected all the necessary ingredients and are therefore in a position

to prove the main results of this paper.

P r o o f of Theorem 1.2. Suppose that ϕ is locally spectrally bounded at e,

and let M be a positive constant such that rϕ(T )(e) 6 MrT (e) for all T ∈ L(X).

By Lemma 2.4, the map ϕ is spectrally bounded; and so, by Lemma 2.2, there

exist a nonzero scalar c ∈ C and an invertible matrix A ∈ Mn(C) such that either

ϕ(T ) = cATA−1 + (ϕ(I) − cI) tr(T/n) or ϕ(T ) = cAT trA−1 + (ϕ(I) − cI) tr(T/n)

for all T ∈ Mn(C).
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Assume that ϕ(T ) = cATA−1 + (ϕ(I) − cI) tr(T/n) for all T ∈ Mn(C), and note

that e and Ae are linearly dependent. Indeed, suppose by the way of contradiction

that e andA−1e are linearly independent. As n > 3, we can find a matrix T1 ∈ Mn(C)

such that T1e = 0, T1A
−1e = A−1e, and tr(T1) = 0. We have σT1

(e) = {0} and

σϕ(T1)(e) = {c}; and so rT1
(e) = 0 and rϕ(T1)(e) = |c|. This entails that c = 0 and

contradicts the surjectivity of ϕ. Now, let us show by the way of contradiction that

e and ϕ(I)e are linearly dependent. So, assume on the contrary that e and ϕ(I)e are

linearly independent, and note that in this case e and A−1f are linearly independent

too, where f := ϕ(I)e−ce. It is easy to see that we can find a matrix T2 ∈ Mn(C) such

that T2e = 0, T2A
−1f = c−1A−1((1+c)f −ϕ(I)f), and tr(T2/n) = 1. Thus, we have

σT2
(e) = {0}, rT2

(e) = 0, ϕ(T2)e = f and ϕ(T2)f = f . From this together with the

equality (2.2), we infer that σϕ(T2)(e) = {1} and rϕ(T2)(e) = 1, which contradicts the

fact that ϕ is locally spectrally bounded at e. So, write ϕ(I)e = ke for some nonzero

constant k ∈ C, and let us show that k = c. For every ν ∈ C we can find a matrix Tν

such that Tνe = e and tr(Tν/n) = ν. As e and A−1e are linearly dependent, it is easy

to see that ϕ(Tν)e = (c + (k − c)ν)e, and so rϕ(Tν)(e) = |(c + (k − c)ν)|. Therefore,

as rTν
(e) = 1, we have |(c + (k − c)ν)| 6 M for all ν ∈ C, which implies that k = c

and ϕ(I)e = ce. Hence ϕ(T ) = cATA−1 + c(S − I) tr(T/n) for all T ∈ Mn(C), with

Ae = αe for some nonzero α ∈ C and Se = e, where S := c−1ϕ(I). Dividing A by α

if necessary, we may assume that Ae = e.

The case when ϕ takes the second form is dealt with similarly; and the proof is

complete. �

P r o o f of Corollary 1.3. Checking the ‘if’ part is straightforward, so we will

only deal with the ‘only if’ part. So assume that ϕ is locally spectrally bounded at

e, and write ϕ(I) = kI for some scalar k. By the proof of the above theorem there

exist a nonzero scalar c and an invertible matrix A with Ae = e and ϕ(I)e = ce such

that either ϕ(T ) = cATA−1 + (ϕ(I) − cI) tr(T/n) or ϕ(T ) = cAT trA−1 + (ϕ(I) −

cI) tr(T/n) for all T ∈ Mn(C). In particular, k = c and so either ϕ(T ) = cATA−1

or ϕ(T ) = cAT trA−1 for all T ∈ Mn(C). Lemma 2.5 yields that ϕ takes only the

first form; and the proof is therefore complete. �

P r o o f of Theorem 1.1. Note that, since the sufficiency condition is obvious, we

only need to prove the necessity. So, assume that ϕ is locally spectrally bounded

at e. By Lemma 2.4 the map ϕ is spectrally bounded, and therefore by Lemma 2.1

there exist a nonzero complex number c and an epimorphism or an anti-epimorphism

J on L(H) such that ϕ(T ) = cJ(T ) for all T ∈ L(H).

Next, let us show by way of contradiction that ϕ is injective. So, assume that

ϕ is not injective and note that, in this case, ker(ϕ) is an ideal of L(H) containing

K(H), the ideal of all compact operators on H. So, pick an arbitrary ε > 0 and let
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fε be a linear functional on H such that fε(e) = ε − 1. We have (e ⊗ fε + I)e = εe,

σe⊗fε+I(e) = {ε}, and σϕ(e⊗fε+I)(e) = σϕ(I)(e) = {c} since e ⊗ fε ∈ K(H). In

particular, re⊗fε+I(e) = ε and rϕ(e⊗fε+I)(e) = |c|, and so there is a positive constant

M such that |c| 6 Mε for all ε > 0 since ϕ is locally spectrally bounded at e. This

implies that c = 0, which is a contradiction. Thus J is an automorphism or an anti-

automorphism. Now by the fundamental isomorphism theorem [12, Theorem 2.5.19]

(see also [8]) there exists an invertible operator A ∈ L(H) such that J(T ) = ATA−1

or J(T ) = AT trA−1 for all T ∈ L(H). Lemma 2.5 ensures that the second form is

excluded, and consequently ϕ takes only the first. Moreover, in this case, Ae = λe

for some nonzero scalar λ; otherwise, we can find T ∈ L(X) such that Te = 0

and TA−1e = A−1e. This shows that rT (e) = 0 and rϕ(T )(e) = 1, and gives a

contradiction. Dividing A by λ if necessary, we may assume that Ae = e; and the

proof is complete. �

3. Linear local spectrum compressors

This section is devoted to deriving some consequences of the main results of this

paper. These consequences describe linear maps from L(H) onto itself compressing

the local spectrum. A linear map ϕ from L(H) into itself is said to compress the

local spectrum at a fixed nonzero vector e ∈ H if

σϕ(T )(e) ⊆ σT (e)

for all T ∈ L(H).

The first consequence extends [7, Theorem 3.3] by replacing “preserves the local

spectrum” by the weaker hypothesis “compresses the local spectrum” in the Hilbert

space setting.

Theorem 3.1. Let H be an infinite dimensional Hilbert space and let e ∈ H

be a fixed nonzero vector. A continuous surjective linear map ϕ : L(H) → L(H)

compresses the local spectrum at e if and only if there is an invertible operator

A ∈ L(H) such that Ae = e, and ϕ(T ) = ATA−1 for all T ∈ L(H).

P r o o f. Assume that ϕ compresses the local spectrum at e. By using the fact

that rT (x) > max{|λ| : λ ∈ σT (x)} for all T ∈ L(H) (see for instance [1] or [11])

together with the same argument as in the proof of Lemma 2.4, one can see that ϕ is

spectrally bounded. Now, in the same way as in the end of the proof of Theorem 1.1,

one can see that ϕ is injective and there exist a nonzero scalar c and an invertible

operator A ∈ L(H) such that either ϕ(T ) = cATA−1 or ϕ(T ) = cAT trA−1 for all
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T ∈ L(H). By [9, Lemma 5], the second form is not possible, and ϕ(T ) = cATA−1

for all T ∈ L(H), from which one can see that A can be supposed to satisfy Ae = e.

The desired conclusion follows from the fact that {c} = σϕ(I)(e) ⊆ σI(e) = 1, which

means that c = 1.

As the sufficiency condition is obvious, the proof is complete. �

The second consequence describes linear maps onMn(C) which compress the local

spectrum at a fixed nonzero vector, and extends the main result of [9].

Theorem 3.2. Let n be a positive integer, and let e ∈ C
n be a fixed nonzero

vector. A linear map ϕ from Mn(C) into itself compresses the local spectrum at e if

and only if there is an invertible matrix A ∈ Mn(C) such that

(3.3) Ae = e and ϕ(T ) = ATA−1 for all T ∈ Mn(C).

P r o o f. Evidently, the formula (3.3) defines a compressing local spectrum bi-

jective linear map at e.

Conversely, if ϕ compresses the local spectrum, then in particular, it preserves at

least one eigenvalue of each matrix, i.e., σ(ϕ(T )) ∩ σ(T ) 6= ∅ for all T ∈ Mn(C).

Therefore, by [2, Theorem 2], there is an invertible matrix A ∈ Mn(C) such that

ϕ(T ) = ATA−1 or ϕ(T ) = AT trA−1 for all T ∈ Mn(C). Moreover, by [9, Lemma 5]

the second form is excluded, and consequently ϕ takes only the first, from which we

may assume that Ae = e. This completes the proof. �
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