Photosynthetica, 2013 (vol. 51), issue 2

Photosynthetica 2013, 51(2):238-244 | DOI: 10.1007/s11099-013-0014-5

Enhancement of low-temperature tolerance in transgenic tomato plants overexpressing Lefad7 through regulation of trienoic fatty acids

X. Y. Liu1, Y. B. Teng1, B. Li2, Q. W. Meng2,*
1 College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, P. R. China
2 College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, P. R. China

We studied how tomato (Lycopersicon esculentum Mill.) chloroplast omega-3 fatty acid desaturase gene (Lefad7) overexpression enhanced low-temperature (LT) tolerance in transgenic tomato plants. In these plants, the content of linolenic acid (18:3) markedly increased and, correspondingly, the content of linoleic acid (18:2) decreased. Similar changes were found after 6 h under LT (4°C) treatment. Under LT stress, wild type (WT) tomato plants showed a much greater increase in relative electrolyte leakage and malondialdehyde (MDA) contents compared with transgenic plants. Transgenic plants exhibited higher activities of antioxidative enzymes and a lower content of reactive oxygen species (ROS). Transgenic plants maintained a relatively higher level of the net photosynthetic rate (P N) and chlorophyll (Chl) content than WT plants under LT stress. Taken together, we suggested that overexpression of Lefad7 enhanced LT tolerance by changing the composition of membrane lipids in tomato plants, with the increased content of trienoic fatty acids and reduced content of dienoic fatty acids that led to series of physiological alterations.

Keywords: chloroplast omega-3 fatty acid desaturase gene; Lycopersicon esculentum

Received: December 8, 2011; Accepted: November 28, 2012; Published: June 1, 2013Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Liu, X.Y., Teng, Y.B., Li, B., & Meng, Q.W. (2013). Enhancement of low-temperature tolerance in transgenic tomato plants overexpressing Lefad7 through regulation of trienoic fatty acids. Photosynthetica51(2), 238-244. doi: 10.1007/s11099-013-0014-5.
Download citation

References

  1. Andreu, V., Collados, R., Testillano, P.S. et al.: In situ molecular identification of the plastid omega3 fatty acid desaturase FAD7 from soybean: evidence of thylakoid membrane localization. - Plant Physiol. 145: 1336-1344, 2007. Go to original source...
  2. Andreu, V., Lagunas, B., Collados, R., et al.: The GmFAD7 gene family from soybean: identification of novel genes and tissue-specific conformations of the FAD7 enzyme involved in desaturase activity. - J. Exp. Bot. 61: 3371-3384, 2010. Go to original source...
  3. Alonso, A., Queiroz, C.S., Magalhaes, A.C.: Chilling stress leads to increased cell membrane rigidity in roots of coffee (Coffea arabica L.) seedlings. - Biochim. Biophys. Acta 1323: 75-84, 1997. Go to original source...
  4. Barclay, K.D., McKersie, B.D.: Peroxidation reactions in plant membranes: effects of free fatty acids. - Lipids 29: 877-883, 1994. Go to original source...
  5. Browse, J., Kunst, L., Anderson, S. et al.: A mutant of Arabidopsis deficient in the chloroplast 16:1/18:1 desaturase. - Plant Physiol. 90: 522-529, 1989. Go to original source...
  6. Browse, J., McCourt, P., Somerville, C.: A mutant of Arabidopsis deficient in c(18:3) and c(16:3) leaf lipids. - Plant Physiol. 81: 859-864, 1986.
  7. Browse, J., Somerville, C.: Glycerolipid synthesis: biochemistry and regulation. - Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 467-506, 1991. Go to original source...
  8. Bruinsma, J.: A Comment on spectrophotometric determination of chlorophyll. - Biochim. Biophys. Acta 52: 576-578, 1961. Go to original source...
  9. Burdon, R.H., Gill, V., Boyd, P.A., O'Kane, D.: Chilling, Oxidative Stress and Antioxidant Enzyme Responses in Arabidopsis thaliana. - Proc. Roy. Soc. Edinburgh B-Biol. Sci. 102: 177-185, 1994.
  10. Chapin, F.S., Zavaleta, E.S., Eviner, V.T. et al.: Consequences of changing biodiversity. - Nature 405: 234-242, 2000. Go to original source...
  11. Cheesbrough, T.M.: Changes in the Enzymes for Fatty Acid Synthesis and Desaturation during Acclimation of Developing Soybean Seeds to Altered Growth Temperature. - Plant Physiol. 90: 760-764, 1989. Go to original source...
  12. Fryer, M.J., Andrews, J.R., Oxborough, K. et al.: Relationship between CO2 Assimilation, Photosynthetic Electron Transport, and Active O2 Metabolism in Leaves of Maize in the Field during Periods of Low Temperature. - Plant Physiol. 116: 571-580, 1998. Go to original source...
  13. Giannopolitis, C.N., Ries, S.K.: Superoxide Dismutases 1 Occurrence in Higher Plants. - Plant Physiol. 59: 309-314, 1977. Go to original source...
  14. Griffiths, G., Leverentz, M., Silkowski, H., Gill, N., Sanchez-Serrano, J.J.: Lipid hydroperoxide levels in plant tissues. - J. Exp. Bot. 51: 1363-1370, 2000. Go to original source...
  15. Guo, B., Liang, Y.C., Zhu, Y.G., Zhao, F.J.: Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress. - Environ. Pollution 147: 743-749, 2007. Go to original source...
  16. Hara, M., Terashima, S., Fukaya, T., Kuboi, T.: Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. - Planta 217: 290-298, 2003. Go to original source...
  17. Huang, G., Ma, S., Bai, L. et al.: Signal transduction during cold, salt, and drought stresses in plants. - Mol. Biol. Rep. 39: 969-987, 2012. Go to original source...
  18. Iba, K.: Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. - Annu. Rev. Plant Biol. 53: 225-245, 2002. Go to original source...
  19. Jimenez, A., Hernandez, J.A., delRio, L.A., Sevilla, F.: Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. - Plant Physiol. 114: 275-284, 1997. Go to original source...
  20. Kargiotidou, A., Deli, D., Galanopoulou, D., Tsaftaris, A., Farmaki, T.: Low temperature and light regulate delta 12 fatty acid desaturases (FAD2) at a transcriptional level in cotton (Gossypium hirsutum). - J. Exp. Bot. 59: 2043-2056, 2008. Go to original source...
  21. Kodama, H., Hamada, T., Horiguchi, G. et al.: Genetic Enhancement of Cold Tolerance by Expression of a Gene for Chloroplast [omega]-3 Fatty Acid Desaturase in Transgenic Tobacco. - Plant Physiol. 105: 601-605, 1994. Go to original source...
  22. Kratsch, H.A., Wise, R.R.: The ultrastructure of chilling stress. - Plant Cell Environ. 23: 337-350, 2000. Go to original source...
  23. Lemieux, B., Miquel, M., Somerville, C., Browse, J.: Mutants of Arabidopsis with alterations in seed lipid fatty acid composition. - Theor. Appl. Genet. 80: 232-240, 1990. Go to original source...
  24. Liu, X.Y., Li, B., Yang, J.H. et al.: Overexpression of tomato chloroplast omega-3 fatty acid desaturase gene alleviates the photoinhibition of photosystems 2 and 1 under chilling stress. - Photosynthetica 46: 185-192, 2008. Go to original source...
  25. Liu, X.Y., Yang, J.H., Li, B. et al.: Antisense-mediated depletion of tomato chloroplast omega-3 fatty acid desaturase enhances thermal tolerance. - J. Integrative Plant Biol. 48: 1096-1107, 2006.
  26. McConn, M., Hugly, S., Browse, J., Somerville, C.: A Mutation at the fad8 locus of Arabidopsis identifies a second chloroplast ω-3 desaturase. - Plant Physiol. 106: 1609-1614, 1994. Go to original source...
  27. Miquel, M., Browse, J.: Arabidopsis mutants deficient in polyunsaturated fatty acid synthesis. Biochemical and genetic characterization of a plant oleoyl-phosphatidylcholine desaturase. - J. Biol. Chem. 267: 1502-1509, 1992.
  28. Mittler, R.: Oxidative stress, antioxidants and stress tolerance. - Trends Plant Sci. 7: 405-410, 2002. Go to original source...
  29. Murakami, Y., Tsuyama, M., Kobayashi, Y. et al.: Trienoic fatty acids and plant tolerance of high temperature. - Science 287: 476-479, 2000.
  30. Murata, N., Los, D.A.: Membrane Fluidity and Temperature Perception. - Plant Physiol. 115: 875-879, 1997. Go to original source...
  31. Nishida, I., Murata, N.: Chilling sensitivity in plants and cyanobacteria: The crucial contribution of membrane lipids. - Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 541-568, 1996. Go to original source...
  32. Nishiuchi, T., Iba, K.: Roles of plastid omega-3 fatty acid desaturases in defense response of higher plants. - J. Plant Res. 111: 481-486, 1998. Go to original source...
  33. O'Kane, D., Gill, V., Boyd, P., Burdon, B.: Chilling, oxidative stress and antioxidant responses in Arabidopsis thaliana callus. - Planta 198: 371-377, 1996. Go to original source...
  34. Routaboul, J.M., Fischer, S.F., Browse, J.: Trienoic fatty acids are required to maintain chloroplast function at low temperatures. - Plant Physiol. 124: 1697-1705, 2000. Go to original source...
  35. Sairam, R.K., Srivastava, G.C.: Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. - Plant Sci. 162: 897-904, 2002. Go to original source...
  36. Santos, C.L.V., Campos, A., Azevedo, H., Caldeira, G.: In situ and in vitro senescence induced by KCl stress: nutritional imbalance, lipid peroxidation and antioxidant metabolism. - J. Exp. Bot. 52: 351-360, 2001. Go to original source...
  37. Shimada, T., Wakita, Y., Otani, M., Iba, K.: Modification of fatty acid composition in rice plants by transformation with a tobacco microsomal omega-3 fatty acid desaturase gene (NtFAD3). - Plant Biotech. 17: 43-48, 2000. Go to original source...
  38. Somerville, C.: Direct tests of the role of membrane lipid composition in low-temperature-induced photoinhibition and chilling sensitivity in plants and cyanobacteria. - Proc. Natl. Acad. Sci. USA 92: 6215-6218, 1995. Go to original source...
  39. Somerville, C., Browse, J.: Dissecting desaturation: plants prove advantageous. - Trends Cell Biol. 6: 148-153, 1996. Go to original source...
  40. Su, W.A., Wang, W.Y., Li, J.S.: Analysis of plant lipid and fatty acid. - Plant Physiol. Commun. 3: 54-60, 1980.
  41. Teixeira, M.C., Carvalho, I.S., Brodelius, M.: Omega-3 fatty acid desaturase genes isolated from purslane (Portulaca oleracea L.): expression in different tissues and response to cold and wound stress. - J. Agric. Food Chem. 58: 1870-1877, 2010.
  42. Upchurch, R.G.: Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. - Biotechnol. Lett. 30: 967-977, 2008. Go to original source...
  43. Wang, A.G., Luo, G.H.: Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants. - Plant Physiol. Commun. 6: 55-57, 1990.
  44. Williams, J.P., Khan, M.U., Wong, D.: Low temperatureinduced fatty acid desaturation in Brassica napus: thermal deactivation and reactivation of the process. - Biochim. Biophys. Acta. 1128: 275-279, 1992. Go to original source...
  45. Xu, Y.N., Siegenthaler, P.A.: Low temperature treatments induce an increase in the relative content of both linolenic and delta(3)-trans-hexadecenoic acid in thylakoid membrane phosphatidylglycerol of squash cotyledons. - Plant Cell Physiol. 38: 611-618, 1997. Go to original source...
  46. Yu, C., Wang, H.S., Yang, S. et al.: Overexpression of endoplasmic reticulum omega-3 fatty acid desaturase gene improves chilling tolerance in tomato. - Plant Physiol. Biochem. 47: 1102-1112, 2009. Go to original source...
  47. Zhang, M., Barg, R., Yin, M. et al.: Modulated fatty acid desaturation via overexpression of two distinct omega-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. - Plant J. 44: 361-371, 2005. Go to original source...