Photosynthetica, 2017 (vol. 55), issue 2

Photosynthetica 2017, 55(2):308-316 | DOI: 10.1007/s11099-016-0243-5

Arbuscular mycorrhizal fungus Rhizophagus irregularis influences key physiological parameters of olive trees (Olea europaea L.) and mineral nutrient profile

M. Tekaya1,*, B. Mechri1, N. Mbarki1, H. Cheheb2, M. Hammami1, F. Attia3,4
1 Laboratoire de Biochimie, USCR Spectrométrie de Masse, LR-NAFS/LR12ES05 Nutrition - Aliments Fonctionnels et Santé Vasculaire, Faculté de Médecine, Université de Monastir, Monastir, Tunisie
2 Institut de l'Olivier, Unité Spécialisée de Sousse, Sousse, Tunisie
3 Equipe Recherches Agronomiques, Agronutrition, Carbonne, France
4 LabCom C2R-BIONUT, Toulouse, France

In this study, we hypothesized that colonization of olive trees (Olea europaea L.) with the arbuscular mycorrhizal fungus Rhizophagus irregularis could modify the profiles of rhizosphere microbial communities with subsequent effects on nutrient uptake that directly affects olive tree physiology and performance. In this context, a greenhouse experiment was carried out in order to study the effects of mycorrhizal colonization by R. irregularis on photosynthesis, pigment content, carbohydrate profile, and nutrient uptake in olive tree. After six months of growth, photosynthetic rate in mycorrhizal (M) plants was significantly higher than that of nonmycorrhizal plants. A sugar content analysis showed enhanced concentrations of mannitol, fructose, sucrose, raffinose, and trehalose in M roots. We also observed a significant increase in P, K, Ca, Mg, Zn, Fe, and Mn contents in leaves of the M plants. These results are important, since nutrient deficiency often occurs in Mediterranean semiarid ecosystems, where olive trees occupy a major place.

Keywords: arbuscular mycorrhizal symbiosis; carbohydrates; chlorophyll; gas exchange; lipids; mineral nutrition

Received: November 21, 2015; Accepted: May 5, 2016; Published: June 1, 2017Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Tekaya, M., Mechri, B., Mbarki, N., Cheheb, H., Hammami, M., & Attia, F. (2017). Arbuscular mycorrhizal fungus Rhizophagus irregularis influences key physiological parameters of olive trees (Olea europaea L.) and mineral nutrient profile. Photosynthetica55(2), 308-316. doi: 10.1007/s11099-016-0243-5.
Download citation

References

  1. Abdel-Fattah G.M., Asrar A.A., Al-Amri S.M., Abdel-Salam E.M.: Influence of arbuscular mycorrhiza and phosphorus fertilization on the gas exchange, growth and phosphatase activity of soybean (Glycine max L.) plants. - Photosynthetica 52: 581-588, 2014. Go to original source...
  2. Al-Karaki G.N., Clark R.B.: Varied rates of mycorrhizal inoculum on growth and nutrient acquisition by barley grown with drought stress. - J. Plant Nutr. 22: 1775-1784, 1999. Go to original source...
  3. Bago B., Zipfel W., Williams R.M. et al.: Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis. - Plant Physiol. 128: 108-124, 2002. Go to original source...
  4. Bago B., Pfeffer P.E., Shachar-Hill Y.: Carbon metabolism and transport in arbuscular mycorrhizas. - Plant Physiol. 124: 949-958, 2000. Go to original source...
  5. Bartolozzi F., Bertazza G., Bassi D., Cristoferi G.: Simultaneous determination of soluble sugars and organic acids as their trimethylsilyl derivatives in apricot fruits by gas-liquid chromatography. - J. Chromatogr. A. 758: 99-107, 1997. Go to original source...
  6. Black K.G., Mitchell D.T., Osbourne B.A.: Effect of mycorrhizal-enhanced leaf phosphate status on carbon partitioning, translocation and photosynthesis in cucumber. - Plant Cell Environ. 23: 797-809, 2000. Go to original source...
  7. Boldt K., Pörs Y., Haupt B. et al.: Photochemical processes, carbon assimilation and RNA accumulation of sucrose transporter genes in tomato arbuscular mycorrhiza. - J. Plant Physiol. 168: 1256-1263, 2011. Go to original source...
  8. Bücking H., Shachar-Hill H.: Phosphate uptake, transport and transfer by the arbuscular mycorrhizal fungus Glomus intraradices is stimulated by increased carbohydrate availability. - New Phytol. 165: 899-912, 2005. Go to original source...
  9. Bücking H., Heyser W.: Uptake and transfer of nutrients in ectomycorrhizal associations: interactions between photosynthesis and phosphorus nutrition. - Mycorrhiza 13: 59-69, 2003. Go to original source...
  10. Camejo D., Rodríguez P., Morales M.A. et al.: High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. - J. Plant Physiol. 162: 281-289, 2005. Go to original source...
  11. Conde C., Silva P., Agasse A. et al.: Utilization and transport of mannitol in Olea europaea and implications for salt stress tolerance. - Plant Cell Physiol. 48: 42-53, 2007. Go to original source...
  12. De Maria S., Rivelli A.R., Kuffner M. et al.: Interactions between accumulation of trace elements and macronutrients in Salix caprea after inoculation with rhizosphere microorganisms. - Chemosphere 84: 1256-1261, 2011. Go to original source...
  13. Drossopoulos J.B., Niavis C.A.: Seasonal changes of the metabolites in the leaves, bark and xylem tissues of olive tree (Olea europaea L.). II. Carbohydrates. - Ann Bot.-London 62: 321-327, 1988. Go to original source...
  14. Eftekhari M., Alizadeh M., Ebrahimi P.: Evaluation of the total phenolics and quercetin content of foliage in mycorrhizal grape (Vitis vinifera L.) varieties and effect of postharvest drying on quercetin yield. - Ind. Crop. Prod. 38: 160-165, 2012. Go to original source...
  15. Flora L.L., Madore M.A.: Stachyose and mannitol transport in olive (Olea europaea L.). - Planta 189: 484-490, 1993. Go to original source...
  16. García-Sánchez M., Palm J.M., Ocampo J.A. et al.: Arbuscular mycorrhizal fungi alleviate oxidative stress induced by ADOR and enhance antioxidant responses of tomato plants. - J. Plant Physiol. 171: 421-428, 2014. Go to original source...
  17. George E., Häussler K., Vetterlein G. et al.: Water and nutrient translocation by hyphae of Glomus mosseae. - Can. J. Bot. 70: 2130-2137, 1992. Go to original source...
  18. Gholamhoseini M., Ghalavand A., Dolatabadian A. et al.: Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress. - Agr. Water Manage. 117: 106-114, 2013. Go to original source...
  19. Giri B., Kapoor R., Mukerji K.G.: Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum, may be partly related to elevated K+/Na+ rations in root and shoot tissues. - Microb. Ecol. 54: 753-760, 2007. Go to original source...
  20. Glick B.R., Penrose D.M., Li J.: A model for the lowering of plant ethylene contents by plant growth promoting bacteria. - J. Theor. Biol. 190: 63-68, 1998. Go to original source...
  21. Hamdali H., Bouizgarne B., Hafidi M. et al.: Screening for rock phosphate solubilizing Actinomycetes from Moroccan phosphate mines. - Appl. Soil Ecol. 38: 12-19, 2008a. Go to original source...
  22. Hamdali H., Hafidi M., Virolle M.J., Ouhdouch Y.: Growth promotion and protection against damping-off of wheat by two rock phosphate solubilizing actinomycetes in a P-deficient soil under greenhouse conditions. - Appl. Soil Ecol. 40: 510-517, 2008b. Go to original source...
  23. Harris D., Pacovsky R.S., Paul E.A.: Carbon economy of soybean-Rhizobium-Glomus associations. - New Phytol. 101: 427-440, 1985. Go to original source...
  24. Helber N., Wippel K., Sauer N. et al.: A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp. is crucial for the symbiotic relationship with plants. - Plant Cell. 23: 3812-3823, 2011. Go to original source...
  25. Hu H., Penn S.G., Lebrilla C.B., Brown P.H.: Isolation and characterization of soluble boron complexes in higher plants. - Plant Physiol. 113: 649-655, 1997. Go to original source...
  26. Jentschke G., Brandes B., Kuhn A.J. et al.: Interdependence of phosphorus, nitrogen, potassium and magnesium translocation by the ectomycorrhizal fungus Paxillus involutus. - New Phytol. 149: 327-337, 2001. Go to original source...
  27. Kaschuk G., Kuyper T.W., Leffelaar P.A. et al.: Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? - Soil Biol. Biochem. 41: 1233-1244, 2009. Go to original source...
  28. Khan A., Geetha R., Akolkar A. et al.: Differential crossutilization of heterologous siderophores by nodule bacteria of Cajanus cajan and its possible role in growth under ironlimited conditions. - Appl. Soil Ecol. 34: 19-26, 2006. Go to original source...
  29. Krishna H., Singh S.K., Minakshi et al.: Arbuscular-mycorrhizal fungi alleviate transplantation shock in micro-propagated grapevine (Vitis vinifera L.). - J. Hortic. Sci. Biotechnol. 81: 259-263, 2006. Go to original source...
  30. Krüger M., Krüger C., Walker C. et al.: Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. - New Phytol. 193: 970-984, 2012. Go to original source...
  31. Lemanceau P., Bauer P., Kraemer S., Briat J.F.: Iron dynamics in the rhizosphere as a case study for analyzing interactions between soils, plants and microbes. - Plant Soil 321: 513-535, 2009. Go to original source...
  32. Liakopoulos G., Stavrianakou S., Nikolopoulos D. et al.: Quantitative relationships between boron and mannitol concentrations in phloem exudates of Olea europaea leaves under contrasting boron supply conditions. - Plant Soil 323: 177-186, 2009. Go to original source...
  33. Liu A., Hamel C., Elmi A. et al.: Concentrations of K, Ca and Mg in maize colonized by arbuscular mycorrhizal fungi under field conditions. - Can. J. Soil Sci. 82: 271-278, 2002. Go to original source...
  34. Marschner H., Dell B.: Nutrient uptake in mycorrhizal symbiosis. - Plant Soil 159: 89-102, 1994. Go to original source...
  35. Marschner P., Crowley D., Yang C.H.: Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. - Plant Soil 261: 199-208, 2004. Go to original source...
  36. Marschner P., Timonen S.: Bacterial community composition and activity in rhizospheres of roots colonised by arbuscular mycorrhizal fungi. - In: Mukerji K.G., Manoharachary C., Singh J. (ed.): Microbial Activity in the Rhizosphere. Pp. 139-154. Springer, Berlin 2006. Go to original source...
  37. Mechri B., Manga A.G.B., Tekaya M. et al.: Changes in microbial communities and carbohydrate profiles induced by the mycorrhizal fungus (Glomus intraradices) in rhizosphere of olive trees (Olea europaea L.). - Appl. Soil Ecol. 75: 124-133, 2014. Go to original source...
  38. Meddad-Hamza A., Beddiar A., Gollotte A. et al.: Arbuscular mycorrhizal fungi improve the growth of olive trees and their resistance to transplantation stress. - Afr. J. Biotechnol. 9: 1159-1167, 2010.
  39. Olsson P.A., Bååth E., Jakobsen I.: Phosphorus effects on mycelium and storage structures of an arbuscular mycorrhizal fungus as studied in the soil and roots by fatty acid signatures. - Appl. Environ. Microbiol. 63: 3531-3538, 1997. Go to original source...
  40. Olsson P.A., Burleigh S.H., van Aarle I.M.: The influence of external nitrogen on carbon allocation to Glomus intraradices in monoxenic arbuscular mycorrhiza. - New Phytol. 168: 677-686, 2005. Go to original source...
  41. Pfeffer P.E., Douds D.D., Bécard G., Shachar-Hill Y.: Carbon uptake and the metabolism and transport of lipids in and arbuscular mycorrhiza. - Plant Physiol. 120: 587-598, 1999. Go to original source...
  42. Phillips J.M., Hayman D.S.: Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. - T. Brit. Mycol. Soc. 55: 158-161, 1970. Go to original source...
  43. Porras-Soriano A., Sorano-Martín M.L., Porras-Piedra A., Azcon P.: Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. - J. Plant Physiol. 166: 1350-1359, 2009. Go to original source...
  44. Rejšková A., Patková L., Stodůlková E., Lipavska H.: The effect of abiotic stresses on carbohydrate status of olive shoots (Olea europaea L.) under in vitro conditions. - J. Plant Physiol. 164: 174-184, 2007.
  45. Rhodes L. H., Gerdemann J. W.: Translocation of calcium and phosphate by external hyphae of vesicular-arbuscular mycorrhizae. - Soil Sci. 126: 125-126, 1978. Go to original source...
  46. Rillig M.C., Wright S.F., Nichols K.A. et al.: Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. - Plant Soil 233: 167-177, 2001. Go to original source...
  47. Ruiz-Sánchez M., Aroca R., Muñoz Y. et al.: The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. - J. Plant Physiol. 167: 862-869, 2010. Go to original source...
  48. Santiago A., García-López A.M., Quintero J.M. et al.: Effect of Trichoderma asperellum strain T34 and glucose addition on iron nutrition in cucumber grown on calcareous soils. - Soil Biol. Biochem. 57: 598-605, 2013. Go to original source...
  49. Schaarschmidt S., González M.C., Roitsch T. et al.: Regulation of arbuscular mycorhization by carbon. The symbiotic interaction cannot be improved by increased carbon availability accomplished by root-specifically enhanced invertase activity. - Plant Physiol. 143: 1827-1840, 2007.
  50. Schliemann W., Ammer C., Strack D.: Metabolite profiling of mycorrhizal roots of Medicago truncatula. - Phytochemistry 69: 112-146, 2008. Go to original source...
  51. Schutter M.E., Dick R.P.: Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities. - Soil Sci. Soc. Am. J. 64: 1659-668, 2000. Go to original source...
  52. Seifi E., Teymoor S.Y., Alizadeh M., Fereydooni H.: Olive mycorrhization: Influences of genotype, mycorrhiza, and growing periods. - Sci. Hortic.-Amsterdam 180: 214-219, 2014.
  53. Shachar-Hill Y., Pfeffer P.E., Douds D. et al.: Partitioning of intermediate carbon metabolism in VAM colonized leek. - Plant Physiol. 108: 7-15, 1995. Go to original source...
  54. Smith S.E, Read D.J.: Mycorrhizal Symbiosis. Pp. 145-187. Academic Press, London 2008. Go to original source...
  55. Subramanian K.S., Tenshia V., Jayalakshmi K., Ramachandran V.: Biochemical changes and zinc fractions in arbuscular mycorrhizal fungus (Glomus intraradices) inoculated and uninoculated soils under differential zinc fertilization. - Appl. Soil Ecol. 43: 32-39, 2009. Go to original source...
  56. Taylor J., Harrier L.A.: A comparison of development and mineral nutrition of micropropagated Fragaria × ananassa cv. Elvira (strawberry) when colonised by nine species of arbuscular mycorrhizal fungi. - Appl. Soil Ecol. 18: 205-215, 2001. Go to original source...
  57. Wamberg C., Christensen S., Jakobsen I. et al.: The mycorrhizal fungus (Glomus intraradices) affects microbial activity in the rhizosphere of pea plants (Pisum sativum). - Soil Biol. Biochem. 35: 1349-1357, 2003. Go to original source...
  58. Wehner J., Antunes P.M., Powell J.R. et al.: Plant pathogen protection by arbuscular mycorrhizas: a role for fungal diversity? - Pedobiologia 53: 197-201, 2010. Go to original source...
  59. Welch S.A., Taunton A.E., Banfield J.F.: Effect of microorganisms and microbial metabolites on apatite dissolution. - Geomicrobiol. J. 19: 343-367, 2002. Go to original source...
  60. Wright D.P., Read D.J., Scholes J.D.: Mycorrhizal sink strength influences whole plant carbon balance of Trifolium repens L. - Plant Cell Environ. 21: 881-891, 1998. Go to original source...
  61. Wu S.C., Cao Z.H., Li Z.G. et al.: Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. - Geoderma 125: 155-166, 2005. Go to original source...