Photosynthetica, 2017 (vol. 55), issue 2

Photosynthetica 2017, 55(2):317-328 | DOI: 10.1007/s11099-016-0241-7

Photosynthetic responses of a wheat (Asakaze)-barley (Manas) 7H addition line to salt stress

D. Szopkó1, É. Darkó2, I. Molnár2, K. Kruppa2, B. Háló1, A. Vojtkó3, M. Molnár-Láng2, S. Dulai1,*
1 Department of Plant Physiology, Faculty of Science, Eszterházy University, Eger, Hungary
2 Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
3 Department of Botany, Faculty of Science, Eszterházy University, Eger, Hungary

The photosynthetic responses to salt stress were examined in a wheat (Triticum aestivum L. cv. Asakaze)-barley (Hordeum vulgare L. cv. Manas) 7H addition line having elevated salt tolerance and compared to the parental wheat genotype. For this purpose, increasing NaCl concentrations up to 300 mM were applied and followed by a 7-day recovery period. Up to moderate salt stress (200 mM NaCl), forcible stomatal closure, parallel with a reduction in the net assimilation rate (P N), was only observed in wheat, but not in the 7H addition line or barley. Since the photosynthetic electron transport processes of wheat were not affected by NaCl, the impairment in P N could largely be accounted for the salt-induced decline in stomatal conductance (g s), accompanied by depressed intercellular CO2 concentration and carboxylation efficiency. Both, P N and nonstomatal limitation factors (Lns) were practically unaffected by moderate salt stress in barley and in the 7H addition line due to the sustained g s, which might be an efficient strategy to maintain the efficient photosynthetic activity and biomass production. At 300 mM NaCl, both P N and g s decreased significantly in all the genotypes, but the changes in P N and Lns in the 7H addition line were more favourable similar to those in wheat. The downregulation of photosynthetic electron transport processes around PSII, accompanied by increases in the quantum yield of regulated energy dissipation and of the donor side limitation of PSI without damage to PSII, was observed in the addition line and barley during severe stress. Incomplete recovery of P N was observed in the 7H addition line as a result of declined PSII activity probably caused by enhanced cyclic electron flow around PSI. These results suggest that the better photosynthetic tolerance to moderate salt stress of barley can be manifested in the 7H addition line which may be a suitable candidate for improving salt tolerance of wheat.

Keywords: chlorophyll fluorescence induction; leaf gas exchange; recovery; salt tolerance; wheat-barley addition

Received: January 25, 2016; Accepted: May 5, 2016; Published: June 1, 2017Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Szopkó, D., Darkó, É., Molnár, I., Kruppa, K., Háló, B., Vojtkó, A., Molnár-Láng, M., & Dulai, S. (2017). Photosynthetic responses of a wheat (Asakaze)-barley (Manas) 7H addition line to salt stress. Photosynthetica55(2), 317-328. doi: 10.1007/s11099-016-0241-7.
Download citation

References

  1. Allakhverdiev S.I., Nishiyama Y., Miyairi S. et al.: Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbA genes in Synechocystis. - Plant Physiol. 130: 1443-1453, 2002. Go to original source...
  2. Apostolova E.L., Dobrikova A.G., Ivanova P.I. et al.: Relationship between the organization of the PSII supercomplex and the functions of the photosynthetic apparatus. - J. Photoch. Photobio. B. 83: 114-122, 2006. Go to original source...
  3. Asada K.: Production and scavenging of reactive oxygen species in chloroplasts and their functions. - Plant Physiol. 141: 391-396, 2006. Go to original source...
  4. Ashraf M., Harris P.J.C.: Photosynthesis under stressful environments: An overview. - Photosynthetica 51: 163-190, 2013. Go to original source...
  5. Belkhodja R., Morales F., Abadía A. et al.: Effects of salinity on chlorophyll fluorescence and photosynthesis of barley (Hordeum vulgare L.) grown under a triple-line-source sprinkler system in the field. - Photosynthetica 36: 375-387, 1999. Go to original source...
  6. Boyer J.S., Wong S.C., Farquhar D.F.: CO2 and water vapor exchange across leaf cuticle (epidermis) at various water potentials. - Plant Physiol. 114: 185-191, 1997. Go to original source...
  7. Brugnoli E., Lauteri M.: Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C3 nonhalophytes. - Plant Physiol. 95: 628-635, 1991. Go to original source...
  8. Buckley T.N., Farquhar G.D., Mott K.A.: Qualitative effects of patchy stomatal conductance distribution features on gasexchange calculations. - Plant Cell Environ. 20: 867-880, 1997. Go to original source...
  9. Centritto M., Loreto F., Chartzoulakis K.: The use of low [CO2] to estimate diffusional and nondiffusional limitations of photosynthetic capacity of salt-stressed olive saplings. - Plant Cell Environ. 26: 585-594, 2003. Go to original source...
  10. Chaves M.M., Flexas J., Pinheiro C.: Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. - Ann. Bot.-London 103: 551-560, 2009. Go to original source...
  11. Colmer T.D., Munns R., Flowers T.J.: Improving salt tolerance of wheat and barley: future prospects. - Aust. J. Exp. Agr. 45: 1425-1443, 2005. Go to original source...
  12. Colmer T.D., Flowers T.J., Munns R.: Use of wild relatives to improve salt tolerance in wheat. - J. Exp. Bot. 57: 1059-1078, 2006. Go to original source...
  13. da Silva E.N., Ribeiro R.V., Ferreira-Silva S.L. et al.: Salt stress induced damages on the photosynthesis of physic nut young plants. - Sci. Agr. 68: 62-68, 2011. Go to original source...
  14. Darkó É., Janda T., Majláth I. et al.: Salt stress response of wheatbarley addition lines carrying chromosomes from the winter barley "Manas". - Euphytica 203: 491-504, 2015. Go to original source...
  15. Downton W.J.S., Loveys B.R., Grant W.J.R.: Stomatal closure fully accounts for the inhibition of photosynthesis by abscisic acid. - New Phytol. 108: 263-266, 1988. Go to original source...
  16. Dulai S., Molnár I., Háló B. et al.: Photosynthesis in the 7H Asakaze Komugi/Manas wheat/barley addition line during salt stress. - Acta Agron. Hung. 58: 367-376, 2010. Go to original source...
  17. Dulai S., Molnár I., Molnár-Láng M.: Changes of photosynthetic parameters in wheat/barley introgression lines during salt stress. - Acta Biol. Szeged 55: 73-75, 2011.
  18. Dulai S., Molnár I., Szopkó D. et al.: Wheat-Aegilops biuncialis amphiploids have efficient photosynthesis and biomass production during osmotic stress. - J. Plant Physiol. 171: 509-517, 2014. Go to original source...
  19. Everard J.D., Gucci R., Kann S.C. et al.: Gas exchange and carbon partitioning in the leaves of celery (Apium graveolens L.) at various levels of root zone salinity. - Plant Physiol. 106: 281-292, 1994. Go to original source...
  20. Flexas J., Bota J., Loreto F. et al.: Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. - Plant Biol. 6: 269-279, 2004. Go to original source...
  21. Flood P.J., Harbinson J., Aarts M.G.M.: Natural genetic variation in plant photosynthesis. - Trends Plant Sci. 16: 327-335, 2011. Go to original source...
  22. Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. - Biochim. Biophys. Acta 990: 87-92, 1989. Go to original source...
  23. Golding A.J., Johnson G.N.: Down-regulation of linear and activation of cyclic electron transport during drought. - Planta 218: 107-114, 2003. Go to original source...
  24. González A., Martín I., Ayerbe L.: Barley yield in water-stress conditions. The influence of precocity, osmotic adjustment and stomatal conductance. - Field Crop. Res. 62: 23-34, 1999. Go to original source...
  25. Hanachi S., van Labeke M.C., Mehouachi T.: Application of chlorophyll fluorescence to screen eggplant (Solanum melangenum L.) cultivars for salt tolerance. - Photosynthetica 52: 57-62, 2014. Go to original source...
  26. Horton P., Ruban A.: Molecular design of the photosystem II light-harvesting antenna: photosynthesis and photoprotection. - J. Exp. Bot. 56: 365-373, 2005.
  27. Hu T., Yi H., Hu L. et al.: Stomatal and metabolic limitations to photosynthesis resulting from NaCl stress in perennial ryegrass genotypes differing in salt tolerance. - J. Am. Soc. Hortic Sci. 138: 350-357, 2013. Go to original source...
  28. Huang W., Zhang S.B., Cao K.F.: Stimulation of cyclic electron flow during recovery after chilling-induced photoinhibition of PSII. - Plant Cell Physiol. 51: 1922-1928, 2010.
  29. James R.A., Rivelli A.R., Munns R., von Caemmerer S.: Factors affecting CO2 assimilation, leaf injury and growth in saltstressed durum wheat. - Funct. Plant Biol. 29: 1393-1403, 2002. Go to original source...
  30. James R. A., von Caemmerer S., Condon A.G. et al.: Genetic variation in tolerance to the osmotic stress component of salinity stress in durum wheat. - Funct. Plant Biol. 35: 111-123, 2008. Go to original source...
  31. Kalaji H.M., Govindjee, Bosa K. et al.: Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. - Environ. Exp. Bot. 73: 64-72, 2011. Go to original source...
  32. Kirschbaum M.U.F.: Recovery of photosynthesis from water stress in Eucalyptus pauciflora-a process in two stages. - Plant Cell Environ. 11: 685-694, 1988. Go to original source...
  33. Klughammer C., Schreiber U.: An improved method, using saturating light pulses for the determination of photosystem I quantum yield via P700+ absorbance changes at 830 nm. - Planta 192: 261-268, 1994. Go to original source...
  34. Klughammer C., Schreiber U.: Complementary PS II quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the saturation pulse method. - PAM Appl. Notes 1: 11-14, 2008a.
  35. Klughammer C., Schreiber U.: Saturation pulse method for assessment of energy conversion in PS I. - PAM Appl. Notes 1: 27-35, 2008b.
  36. Kozaki A., Takeba G.: Photorespiration protects C3 plants from photooxidation. - Nature 384: 557-560, 1996. Go to original source...
  37. Lawlor D.W.: Limitation to photosynthesis in water-stressed leaves: Stomata vs. metabolism and the role of ATP. - Ann. Bot.-London 89: 871-885, 2002. Go to original source...
  38. Lawlor D.W., Cornic G.: Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. - Plant Cell Environ. 25: 275-294, 2002. Go to original source...
  39. Lu K.X., Yang Y., He Y., Jiang D.A.: Induction of cyclic electron flow around photosystem 1 and state transition are correlated with salt tolerance in soybean. - Photosynthetica 46: 10-16, 2008. Go to original source...
  40. Molnár-Láng M., Linc G., Logojan A., Sutka J.: Production and meiotic pairing behaviour of new hybrids of winter wheat (Triticum aestivum) × winter barley (Hordeum vulgare). - Genome 43: 1045-1054, 2000. Go to original source...
  41. Molnár-Láng M., Szakács É., D Nagy E.: Development and molecular cytogenetic identification of new winter wheat/winter barley disomic addition lines. - In: Buck H.T., Nisi J.E., Salomón N. (ed.): Wheat Production in Stressed Environments. Developments in Plant Breeding. Pp. 707-713. Springer, Dordrecht 2007. Go to original source...
  42. Molnár-Láng M., Kruppa K., Cseh A. et al.: Identification and phenotypic description of new wheat-six-rowed winter barley disomic additions. - Genome 55: 302-311, 2012. Go to original source...
  43. Molnár-Láng M., Linc G., Szakács É.: Wheat-barley hybridization-the last forty years. - Euphytica 195: 315-329, 2014. Go to original source...
  44. Munekage Y., Hashimoto M., Miyake C. et al.: Cyclic electron flow around photosystem I is essential for photosynthesis. - Nature 429: 579-582, 2004. Go to original source...
  45. Munns R.: Comparative physiology of salt and water stress. - Plant Cell Environ. 25: 239-250, 2002. Go to original source...
  46. Munns R., James R.A., Läuchli A.: Approaches to increasing the salt tolerance of wheat and other cereals. - J. Exp. Bot. 57: 1025-1043, 2006. Go to original source...
  47. Munns R., Tester M.: Mechanisms of salinity tolerance. - Annu. Rev. Plant Biol. 59: 651-681, 2008. Go to original source...
  48. Muranaka S., Shimizu K., Kato M.: A salt-tolerant cultivar of wheat maintains photosynthetic activity by suppressing sodium uptake. - Photosynthetica 40: 509-515, 2002.
  49. Nagy Z., Galiba G.: Drought and salt tolerance are not necessarily linked: a study on wheat varieties differing in drought resistance under consecutive water and salinity stresses. - J. Plant Physiol. 145: 168-174, 1995. Go to original source...
  50. Pfanz H., Vodnik D., Wittmann C. et al.: Photosynthetic performance (CO2-compensation point, carboxylation efficiency, and net photosynthesis) of timothy grass (Phleum pratense L.) is affected by elevated carbon dioxide in postvolcanic mofette areas. - Environ. Exp. Bot. 61: 41-48, 2007. Go to original source...
  51. Pitman M.G., Läuchli A.: Global impact of salinity and agricultural ecosystems. - In: Läuchli A., Lüttge U. (ed.): Salinity: Environment-Plants-Molecules. Pp. 3-20. Kluwer, Dordrecht 2002. Go to original source...
  52. Qin J., Dong W.Y., He K.N. et al.: NaCl salinity induced changes in water status, ion contents and photosynthetic properties of Shepherdia argentea (Pursh) Nutt. seedlings. - Plant Soil Environ. 56: 325-332, 2010. Go to original source...
  53. Qiu N., Lu Q., Lu C.: Photosynthesis, photosystem II efficiency and the xanthophyll cycle in the salt-adapted halophyte Atriplex centralasiatica. - New Phytol. 159: 479-486, 2003. Go to original source...
  54. Rahnama A., Poustini K., Tavakkol-Afshari R., Tavakoli A.: Growth and stomatal responses of bread wheat genotypes in tolerance to salt stress. - World Acad. Sci. Eng. Technol. 71: 14-19, 2010.
  55. Sanada Y., Ueda H., Kuribayashi K. et al.: Novel light-dark change of proline levels in halophyte (Mesembryanthemum crystallinum L.) and glycophyte (Hordeum vulgare L. and Triticum aestivum L.) leaves and roots under salt stress. - Plant Cell Physiol. 36: 965-970, 1995. Go to original source...
  56. Stępień P., Kłbus G.: Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress. - Biol. Plantarum 50: 610-616, 2006.
  57. Sudhir P., Murthy S.D.S.: Effects of salt stress on basic processes of photosynthesis. - Photosynthetica 42: 481-486, 2004. Go to original source...
  58. Sudhir P., Pogoryelov D., Kovács L. et al.: The effects of salt stress on photosynthetic electron transport and thylakoid membrane proteins in the cyanobacterium Spirulina platensis. - J. Biochem. Mol. Biol. 38: 481-485, 2005. Go to original source...
  59. Tester M., Davenport R.J.: Na+ tolerance and Na+ transport in higher plants. - Ann. Bot.-London 91: 503-527, 2003. Go to original source...
  60. Teulat B., This D., Khairallah M. et al.: Several QTLs involved in osmotic-adjustment trait variation in barley (Hordeum vulgare L.). - Theor. Appl. Genet. 96: 688-698, 1998. Go to original source...
  61. van Kooten O., Snel J.F.H.: The use of chlorophyll fluorescence nomenclature in plant stress physiology. - Photosynth. Res. 25: 147-150, 1990. Go to original source...
  62. von Caemmerer S., Farquhar G.D.: Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. - Planta 153: 376-387, 1981. Go to original source...