Photosynthetica, 2015 (vol. 53), issue 2

Photosynthetica 2015, 53(2):201-206 | DOI: 10.1007/s11099-015-0097-2

Extracellular ATP affects chlorophyll fluorescence of kidney bean (Phaseolus vulgaris) leaves through Ca2+ and H2O2-dependent mechanism

H. Q. Feng1,*, Q. S. Jiao1, K. Sun1, L. Y. Jia1, W. Y. Tian1
1 College of Life Science, Northwest Normal University, Lanzhou, China

Extracellular ATP (eATP) has been considered as an important extracellular compound to mediate several physiological processes in plant cells. We investigated the effects of eATP on chlorophyll (Chl) fluorescence characteristics of kidney bean (Phaseolus vulgaris) leaves. Treatment with exogenous ATP at 1 mM showed no significant effect on the maximal photochemical efficiency of PSII. However, the treatment significantly enhanced the values of the PSII operating efficiency (ΦPSII), rate of photosynthetic electron transport through PSII (ETR), and photochemical quenching (qP), while the values of the nonphotochemical quenching (qN) and quantum yield of regulated energy dissipation of PSII (YNPQ) significantly decreased. Our observations indicated that eATP stimulated the PSII photochemistry in kidney bean leaves. Similarly, the treatment with exogenous Ca2+ or H2O2 at 1 mM caused also the significant increase in ΦPSII, qP, and ETR and the significant decrease in qN and YNPQ. LaCl3 (an inhibitor of Ca2+ channels) and dimethylthiourea (a scavenger of H2O2) abolished the effects of exogenous ATP. The results suggest that the role of eATP in enhancing the PSII photochemistry could be related to a Ca2+ or H2O2 signaling pathway.

Keywords: photosynthesis; reactive oxygen species; signaling molecules

Received: September 22, 2014; Accepted: November 28, 2014; Published: June 1, 2015Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Feng, H.Q., Jiao, Q.S., Sun, K., Jia, L.Y., & Tian, W.Y. (2015). Extracellular ATP affects chlorophyll fluorescence of kidney bean (Phaseolus vulgaris) leaves through Ca2+ and H2O2-dependent mechanism. Photosynthetica53(2), 201-206. doi: 10.1007/s11099-015-0097-2.
Download citation

References

  1. Baker N.R., Harbinson J., Kramer D.M.: Determining the limitations and regulation of photosynthetic energy transduction in leaves. - Plant Cell Environ. 30: 1107-1125, 2007. Go to original source...
  2. Boyum R, Guidotti G.: Glucose-dependent, cAMP-mediated ATP efflux from Saccharomyces cerevisiae. - Microbiology 143: 1901-1908, 1997. Go to original source...
  3. Chivasa S., Murphy A.M., Hamilton J.M. et al.: Extracellular ATP is a regulator of pathogen defence in plants. - Plant J. 60: 436-448, 2009. Go to original source...
  4. Chivasa S., Simon W.J., Murphy A.M. et al.: The effects of extracellular adenosine 5'-triphosphate on the tobacco proteome. - Proteomics 10: 235-244, 2010. Go to original source...
  5. Choi J., Tanaka K., Cao Y. et al.: Identification of a plant receptor for extracellular ATP. - Science 343: 290-294, 2014. Go to original source...
  6. Costa A., Drago I., Behera S. et al.: H2O2 in plant peroxisomes: an in vivo analysis uncovers a Ca2+-dependent scavenging system. - Plant J. 62: 760-772, 2010. Go to original source...
  7. Dat J., Vandenabeele S., Vranová E. et al.: Dual action of the active oxygen species during plant stress responses. - Cell Mol. Life Sci. 57: 779-795, 2000. Go to original source...
  8. Demidchik V., Nichols C., Oliynyk M. et al.: Is ATP a signaling agent in plants? - Plant Physiol. 133: 456-461, 2003. Go to original source...
  9. Demidchik V., Shang Z.L., Shin R. et al.: Plant extracellular ATP signalling by plasma membrane NADPH oxidase and Ca2+ channels. - Plant J. 58: 903-913, 2009. Go to original source...
  10. Demidchik V., Shabala S.N., Davies J.M.: Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels. - Plant J. 49: 377-386, 2007. Go to original source...
  11. Demmig-Adams B., Adams W.W., Barker D.H. et al.: Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. - Physiol. Plantarum 98: 253-264, 1996. Go to original source...
  12. Dichmann S., Idzko M., Zimpfer U. et al.: Adenosine triphosphate-induced oxygen radical production and CD11b up-regulation: Ca2+ mobilization and actin reorganization in human eosinophils. - Blood 95: 973-978, 2000. Go to original source...
  13. Donnini S., Guidi L., Degl'Innocenti E. et al.: Image changes in chlorophyll fluorescence of cucumber leaves in response to iron deficiency and resupply. - J. Plant Nutr. Soil Sc. 176: 734-742, 2013. Go to original source...
  14. Foresi N.P., Laxalt A.M., Tonón C.V. et al.: Extracellular ATP induces nitric oxide production in tomato cell suspensions. - Plant Physiol. 145: 589-592, 2007. Go to original source...
  15. Hepler P. K.: Calcium: A regulator of growth and development. - Plant Cell 17: 2142-2155, 2005. Go to original source...
  16. Jeter C.R., Tang W., Henaff E. et al.: Evidence of a novel cell signaling role for extracellular adenosine triphosphates and diphosphates in Arabidopsis. - Plant Cell 16: 2652-2664, 2004. Go to original source...
  17. Joseph S.M., Buchakjian M.R., Dubyak G.R.: Colocalization of ATP release sites and ecto-ATPase activity at the extra-cellular surface of human astrocytes. - J. Biol. Chem. 278: 23331-23342, 2003. Go to original source...
  18. Kärkönen A, Koutaniemi S.: Lignin biosynthesis studies in plant tissue cultures. - J. Integr. Plant Biol. 52: 176-185, 2010. Go to original source...
  19. Kim S.Y., Sivaguru M., Stacey G.: Extracellular ATP in plants. Visualization, localization, and analysis of physiological significance in growth and signaling. - Plant Physiol. 142: 984-992, 2006. Go to original source...
  20. Lim M.H., Wu J., Yao J. et al.: Apyrase suppression raises extracellular ATP levels and induces gene expression and cell wall changes characteristic of stress responses. - Plant Physiol. 164: 2054-2067, 2014. Go to original source...
  21. Maxwell K., Johnson G. N.: Chlorophyll fluorescence: a practical guide. - J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  22. Parish R.W., Weibel M.: Extracellular ATP, ecto-ATPase and calcium influx in Dictyostelium discoideum cells. - FEBS Lett. 118: 263-266, 1980. Go to original source...
  23. Petroutsos D., Buscha A., Janßena I. et al.: The chloroplast calcium sensor CAS is required for photoacclimation in Chlamydomonas reinhardtii. - Plant Cell 23: 2950-2963, 2011. Go to original source...
  24. Rentel M.C., Knight M.R.: Oxidative stress-induced calcium signaling in Arabidopsis. - Plant Physiol. 135: 1471-1479, 2004. Go to original source...
  25. Riewe D., Grosman L., Fernie A.R. et al.: A cell wall-bound adenosine nucleosidase is involved in the salvage of extracellular ATP in Solanum tuberosum. - Plant Cell Physiol. 49: 1572-1579, 2008. Go to original source...
  26. Song C.J., Steinebrunner I., Wang X. et al.: Extracellular ATP induces the accumulation of superoxide via NADPH oxidases in Arabidopsis. - Plant Physiol. 140: 1222-1232, 2006. Go to original source...
  27. Staxen I., Pical C., Montgomery L.T. et al.: Abscisic acid induces oscillations in guard-cell cytosolic free calcium that involve phosphoinositide-specific phospholipase C. - P. Natl. Acad. Sci. USA 96: 1779-1784, 1999. Go to original source...
  28. Sun J., Zhang C.L., Deng S.R. et al.: An ATP signalling pathway in plant cells: extracellular ATP triggers programmed cell death in Populus euphratica. - Plant Cell Environ. 35: 893-916, 2012. Go to original source...
  29. Takeda S., Gapper C., Kaya H. et al.: Local positive feedback regulation determines cell shape in root hair cells. - Science 319: 1241-1244, 2008. Go to original source...
  30. Tanaka K., Gilroy S., Jones A.M. et al.: Extracellular ATP signaling in plants. - Trends Cell Biol. 20: 601-608, 2010a. Go to original source...
  31. Tanaka K., Swanson S.J., Gilroy S. et al.: Extracellular nucleotides elicit cytosolic free calcium oscillations in Arabidopsis. - Plant Physiol. 154: 705-719, 2010b. Go to original source...
  32. Thomas C., Rajagopal A., Windsor B. et al.: A role for ectophosphatase in xenobiotic resistance. - Plant Cell 12: 519-533, 2000. Go to original source...
  33. Wang W.H., Chen J., Liu T.W. et al.: Regulation of the calciumsensing receptor in both stomatal movement and photosynthetic electron transport is crucial for water use efficiency and drought tolerance in Arabidopsis. - J. Exp. Bot. 65: 223-234, 2014. Go to original source...
  34. Yegutkin G.G., Mikhailov A., Samburski S.S. et al.: The detection of micromolar pericellular ATP pool on lymphocyte surface by using lymphoid ecto-adenylate kinase as intrinsic ATP sensor. - Mol. Biol. Cell 17: 3378-3385, 2006. Go to original source...