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1. Introduction

In topological spaces, it is well known that normality is preserved under closed

continuous surjections. Many authors have tried to weaken the condition “closed”

in this theorem. In 1978, Long and Herrington [12] used almost closedness due to

Singal [33]. In 1982, Malghan [16] used g-closedness. In 1986, Greenwood and Reilly

[6] used α-closedness due to Mashhour et al. [17]. In 1995, Yoshimura et al. [39]

used almost g-closedness which is a generalization of both almost closedness and

g-closedness. In 1999, Noiri [23] introduced almost αg-closedness using αg-closed

sets [14]. Quite recently, Jafari et al. [8] have introduced the notion of g̃α-closed sets

which are strictly weaker than both α-closed sets and g̃-closed sets. We use g̃α-closed

sets to define a new class of functions called almost g̃α-closed functions. The purpose

of the present paper is to improve preservation theorems of separation axioms, that

is, normality, weak normality, mild normality, almost normality, regularity, almost

regularity, quasi-regularity and strong s-regularity. The following properties are the

main results of the present paper.

Theorem A. Normality and weak normality are preserved under almost g̃α-closed

continuous surjections.
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Theorem B. Regularity and strong s-regularity are preserved under almost α-

open almost g̃α-closed continuous surjections.

2. Preliminaries

Throughout this paper (X, τ) and (Y, σ) (or X and Y ) represent topological spaces

on which no separation axioms are assumed unless otherwise mentioned. For a subset

A of a space (X, τ), cl(A), int(A) and Ac denote the closure of A, the interior of A

and the complement of A respectively.

We recall the following definitions which are useful in the sequel.

Definition 2.1. A subset A of a space (X, τ) is called

(1) a semi-open set [11] if A ⊆ cl(int(A));

(2) an α-open set [20] if A ⊆ int(cl(int(A)));

(3) a regular open set [23] if A = int(cl(A)).

The complements of the above mentioned sets are called their respective closed

sets.

The family of regular open (resp. regular closed) sets of a space (X, τ) is denoted

by RO(X, τ) (RC(X, τ)) or simply by RO(X) (RC(X), respectively).

The family of α-open sets of a space (X, τ) is denoted by τα. It is known [20] that

τ ⊂ τα and τα is a topology for X . The closure and interior of a subset A of X with

respect to τα are denoted by α cl(A) and α int(A), respectively. It is known in [1]

that α cl(A) = A∪ cl(int(cl(A))) and α int(A) = A∩ int(cl(int(A))) for any subset A

of a space (X, τ).

The semi-closure of a subset A of X is denoted by s cl(A), and defined as the

intersection of all semi-closed sets of X containing A.

Definition 2.2. A subset A of a space (X, τ) is called

(1) a generalized closed (briefly g-closed) set [10] if cl(A) ⊆ U whenever A ⊆ U and

U is open in (X, τ). The complement of g-closed set is called g-open set;

(2) an α-generalized closed (briefly αg-closed) set [14] if α cl(A) ⊆ U whenever

A ⊆ U and U is open in (X, τ). The complement of αg-closed set is called

αg-open set;

(3) a ĝ-closed set [35] if cl(A) ⊆ U whenever A ⊆ U and U is semi-open in (X, τ).

The complement of a ĝ-closed set is called a ĝ-open set;

(4) a ∗g-closed set [36] if cl(A) ⊆ U whenever A ⊆ U and U is ĝ-open in (X, τ).

The complement of a ∗g-closed set is called a ∗g-open set;

(5) a ♯g-semi-closed (briefly ♯gs-closed) set [37] if s cl(A) ⊆ U whenever A ⊆ U and

U is ∗g-open in (X, τ). The complement of a ♯gs-closed set is called a ♯gs-open

set;
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(6) a g̃-closed set [7] if cl(A) ⊆ U whenever A ⊆ U and U is ♯gs-open in (X, τ).

The complement of g̃-closed set is called a g̃-open set;

(7) a g̃α-closed set [8] if α cl(A) ⊆ U whenever A ⊆ U and U is ♯gs-open in (X, τ).

The complement of a g̃α-closed set is called a g̃α-open set;

(8) a rαg-closed [23] if α cl(A) ⊆ U whenever A ⊆ U and U is regular open in

(X, τ). The complement of rαg-closed set is called rαg-open set;

(9) a generalized α-closed (briefly gα-closed) set [13] if α cl(A) ⊆ U wheneverA ⊆ U

and U is α-open in (X, τ). The complement of a gα-closed set is called gα-open

set.

R em a r k 2.3. From Definitions 2.1 and 2.2, we have the following implications.

closed //

��

g̃-closed //

��

g-closed

��

α-closed // g̃α-closed // αg-closed

None of these implications is reversible as shown by the following examples and

in the related papers [7] and [8].

3. Almost g̃α-closed functions

Definition 3.1. A function f : (X, τ) → (Y, σ) is said to be

(1) α-closed [17], g-closed [16], αg-closed [23], g̃-closed, g̃α-closed if for each closed

set F of X, f(F ) is α-closed, g-closed, αg-closed, g̃-closed, g̃α-closed, respec-

tively;

(2) almost closed [33], almost α-closed [23], almost g-closed [22], almost αg-closed

[23], almost g̃-closed, almost g̃α-closed if for each F ∈ RC(X, τ), f(F ) is closed

α-closed, g-closed, αg-closed, g̃-closed, g̃α-closed, respectively.

R em a r k 3.2. We have the following diagram for properties of functions:

closed //

��

%%K

K

K

K

K

K

K

g̃-closed

&&M

M

M

M

M

M

// g-closed

&&M

M

M

M

M

M

almost closed

��

//

��

almost g̃-closed

��

//

��

almost g-closed

��

α-closed

%%K

K

K

K

K

K

K

// g̃α-closed

&&M

M

M

M

M

M

// αg-closed

&&M

M

M

M

M

M

almost α-closed // almost g̃α-closed // almost αg-closed
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The following two examples show that almost g̃-closedness is strictly weaker than

almost closedness and g̃-closedness.

E x am p l e 3.3. Let X = {a, b, c, d}, τ = {∅, {a}, {b}, {a, b}, {a, b, c}, {a, b, d}, X}

and σ = {∅, {a}, {b, c}, {a, b, c}, X}. Then the identity function f : (X, τ) → (X, σ)

is almost g̃-closed. However, it is not almost closed since the set {a, c, d} ∈ RC(X, τ)

is such that f({a, c, d}) = {a, c, d} is not closed in (X, σ).

E x am p l e 3.4. Let X = {a, b, c, d}, τ = {∅, {a}, {b}, {a, b}, {a, b, c}, {a, b, d}, X}

and σ = {∅, {a}, {b, c}, {a, b, c}, X}. Then the identity function f : (X, τ) → (X, σ)

is almost g̃-closed. However, it is not g̃-closed since the closed set {c} of (X, τ) is

such that f({c}) = {c} is not g̃-closed in (X, σ).

The following two examples show that almost g-closedness is strictly weaker than

almost g̃-closedness and g-closedness.

E x am p l e 3.5. Let X = {a, b, c, d}, τ = {∅, {a}, {b, c}, {a, b, c}, X} and σ =

{∅, {a}, {b}, {a, b}, {a, b, c}, X}. Then the identity function f : (X, τ) → (X, σ) is

almost g-closed. However, it is not almost g̃-closed since the set {a, d} ∈ RC(X, τ)

is such that f({a, d}) = {a, d} is not g̃-closed in (X, σ).

E x am p l e 3.6. Let X = {a, b, c, d}, τ = {∅, {d}, {b, c}, {b, c, d}, X} and σ =

{∅, {a}, {b}, {a, b}, X}. Then the identity function f : (X, τ) → (X, σ) is almost g-

closed. However, it is not g-closed since the closed set {a} of (X, τ) is such that

f({a}) = {a} is not g-closed in (X, σ).

The following three examples show that almost g̃α-closedness is strictly weaker

than almost α-closedness, g̃α-closedness and almost g̃-closedness.

E x am p l e 3.7. Let X = {a, b, c, d}, τ = {∅, {a}, {b}, {a, b}, X} and σ =

{∅, {a}, {b, c}, {a, b, c}, X}. Then the identity function f : (X, τ) → (X, σ) is al-

most g̃α-closed. However, it is not almost α-closed since the set {a, c, d} ∈ RC(X, τ)

is such that f({a, c, d}) = {a, c, d} is not α-closed in (X, σ).

E x am p l e 3.8. Let X = {a, b, c, d}, τ = {∅, {a}, {b}, {a, b}, {a, b, c}, {a, b, d}, X}

and σ = {∅, {a}, {b, c}, {a, b, c}, X}. Then the identity function f : (X, τ) → (X, σ)

is almost g̃α-closed. However, it is not g̃α-closed since the closed set {c} of (X, τ) is

such that f({c}) = {c} is not g̃α-closed in (X, σ).

E x am p l e 3.9. Let X = {a, b, c, d}, τ = {∅, {d}, {a, b, c}, X} and σ = {∅, {a},

{b}, {a, b}, X}. Then the identity function f : (X, τ) → (X, σ) is almost g̃α-closed.

However, it is not almost g̃-closed since the set {d} ∈ RC(X, τ) is such that f({d}) =

{d} is not g̃-closed in (X, σ).
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The following three examples show that almost αg-closedness is strictly weaker

than almost g-closedness, αg-closedness and almost g̃α-closedness.

E x am p l e 3.10. Let X = {a, b, c, d}, τ = {∅, {a}, {b}, {a, b}, {b, c}, {a, b, c}, X}

and σ = {∅, {a}, {b}, {a, b}, {a, b, c}, X}. Then the identity function f : (X, τ) →

(X, σ) is almost αg-closed. However, it is not almost g̃α-closed since the set {a, d} ∈

RC(X, τ) is such that f({a, d}) = {a, d} is not g̃α-closed in (X, σ).

E x am p l e 3.11. Let X = {a, b, c, d}, τ = {∅, {a}, {c}, {a, b}, {a, b, c}, {a, b, d},

X} and σ = {∅, {a}, {b, c}, {a, b, c}, X}. Then the identity function f : (X, τ) →

(X, σ) is almost αg-closed. However, it is not αg-closed since the closed set {c} of

(X, τ) is such that f({c}) = {c} is not αg-closed in (X, σ).

E x am p l e 3.12. Let X = {a, b, c, d}, τ = {∅, {d}, {a, b, c}, X} and σ =

{∅, {a}, {b}, {a, b}, {a, d}, {a, b, d}, X}. Then the identity function f : (X, τ) →

(X, σ) is almost αg-closed. However, it is not almost g-closed since the set

{d} ∈ RC(X, τ) is such that f({d}) = {d} is not g-closed in (X, σ).

Theorem 3.13. A surjection f : X → Y is almost g̃α-closed if and only if for

each subset S of Y and each U ∈ RO(X) containing f−1(S) there exists a g̃α-open

set V of Y such that S ⊂ V and f−1(V ) ⊂ U .

P r o o f. Necessity. Suppose that f is almost g̃α-closed. Let S be a subset of Y

and let U ∈ RO(X) containing f−1(S). Put V = Y −f(X−U), then V is a g̃α-open

set in Y such that S ⊂ V and f−1(V ) ⊂ U .

Sufficiency. Let F be any regular closed set of X . Then f−1(Y − f(F )) ⊂ X − F

and X − F ∈ RO(X). There exists a g̃α-open set V in Y such that Y − f(F ) ⊂ V

and f−1(V ) ⊂ X − F . Therefore, we have f(F ) ⊃ Y − V and F ⊂ f−1(Y − V ).

Hence, we obtain f(F ) = Y − V and f(F ) is g̃α-closed in Y . This shows that f is

almost g̃α-closed. �

Corollary 3.14. If f : X → Y is an almost g̃α-closed surjection, then for each
♯gs-closed set F in Y and each U ∈ RO(X) containing f−1(F ) there exists an α-open

set V in Y such that F ⊂ V and f−1(V ) ⊂ U .

P r o o f. Let F be a ♯gs-closed set in Y and let U ∈ RO(X) containing f−1(F ).

By Theorem 3.13, there exists a g̃α-open setW in Y such that F ⊂ W and f−1(W ) ⊂

U . Since W is g̃α-open, we have F ⊂ α int(W ). Put V = α int(W ), then V is α-open

in Y and f−1(V ) ⊂ U . �
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4. Normal spaces

In this section we make use of g̃α-closed sets to obtain further characterizations

and preservation theorems of normal spaces.

Theorem 4.1. The following conditions are equivalent for a space X :

(1) X is normal;

(2) for any disjoint closed sets A and B there exist disjoint g̃α-open sets U , V such

that A ⊂ U and B ⊂ V ;

(3) for any closed set A and any open set V containing A there exists a g̃α-open set

U in X such that A ⊂ U ⊂ α cl(U) ⊂ V .

P r o o f. (1) ⇒ (2). This is obvious since every open set is g̃α-open.

(2) ⇒ (3). Let A be a closed set and V an open set containing A. Then A and

X − V are disjoint closed sets. There exist disjoint g̃α-open sets U and W such

that A ⊂ U and X − V ⊂ W . Since X − V is closed and hence ♯gs-closed, we have

X−V ⊂ α int(W ) and U∩α int(W ) = ∅. Therefore, we obtain α cl(U)∩α int(W ) = ∅

and hence A ⊂ U ⊂ α cl(U) ⊂ X − α int(W ) ⊂ V .

(3) ⇒ (1). Let A, B be disjoint closed sets in X . Then A ⊂ X − B and X − B

is open. There exists a g̃α-open set G in X such that A ⊂ G ⊂ α cl(G) ⊂ X − B.

Since A is closed, we have A ⊂ α int(G). Put U = int(cl(int(α int(G)))) and V =

int(cl(int(X−α cl(G)))). Then U and V are disjoint open sets in X such that A ⊂ U

and B ⊂ V . Therefore, X is normal. �

Theorem 4.2. If f : X → Y is a continuous almost g̃α-closed surjection and X

is a normal space, then Y is normal.

P r o o f. Let A and B be any disjoint closed sets in Y . Then f−1(A) and

f−1(B) are disjoint closed sets in X . Since X is normal, there exist disjoint open

sets U and V such that f−1(A) ⊂ U and f−1(B) ⊂ V . Let G = int(cl(U)) and H =

int(cl(V )), then G and H are disjoint regular open sets in X such that f−1(A) ⊂ G

and f−1(B) ⊂ H . By Theorem 3.13, there exist g̃α-open sets K and L in Y such

that A ⊂ K, B ⊂ L, f−1(K) ⊂ G and f−1(L) ⊂ H . Since G and H are disjoint, so

are K and L. It follows from Theorem 4.1 that Y is normal.

The following two corollaries are immediate consequences of Theorem 4.2.

Corollary 4.3 [12]. If f : X → Y is a continuous almost closed surjection and X

is a normal space, then Y is normal.
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Corollary 4.4 [6]. If f : X → Y is a continuous α-closed surjection and X is a

normal space, then Y is normal.

Definition 4.5. A space X is said to be

(1) weakly normal [40] if for each decreasing sequence {Fn} of closed sets in X such

that
⋂
{Fn : n ∈ N} = ∅ and each closed set H in X with H ∩ F1 = ∅ there

exist n ∈ N and an open set U in X such that Fn ⊂ U and cl(U) ∩ H = ∅;

(2) mildly normal [34] if for any disjoint regular closed sets A and B there exist

disjoint open sets U and V such that A ⊂ U and B ⊂ V ;

(3) almost normal [32] if for every pair of disjoint sets A and B, one of which is

closed and the other is regular closed, there exist disjoint open sets U and V

such that A ⊂ U and B ⊂ V .

Lemma 4.6 [23]. If A is an α-open set of a space X , then α cl(A) = cl(A) =

cl(int(A)).

Lemma 4.7 [21]. A space X is weakly normal if and only if for each decreasing

sequence {Fn} of closed sets in X such that
⋂
{Fn : n ∈ N} = ∅ and each open set

U in X such that F1 ⊂ U there exist n ∈ N and an open set G in X such that

Fn ⊂ G ⊂ cl(G) ⊂ U .

Theorem 4.8. If f : X → Y is an almost g̃α-closed continuous surjection and X

is a weakly normal space, then Y is weakly normal.

P r o o f. Let {Fn} be any decreasing sequence of closed sets of Y with no

common point and let V be any open set in Y such that F1 ⊂ V . Then {f−1(Fn)}

is a decreasing sequence of closed sets in X with no common point and f−1(V ) is an

open set in X such that f−1(F1) ⊂ f−1(V ). SinceX is weakly normal, by Lemma 4.7

there exist n ∈ N and an open set U in X such that f−1(Fn) ⊂ U ⊂ cl(U) ⊂ f−1(V ).

Therefore, f−1(Fn) ⊂ int(cl(U)) and by Corollary 3.14 there exists an α-open set

G in Y such that Fn ⊂ G and f−1(G) ⊂ int(cl(U)). Since cl(U) is regular closed

and f is almost g̃α-closed, f(cl(U)) is g̃α-closed in Y . Thus, we obtain Fn ⊂ G ⊂

α cl(G) ⊂ α cl(f(cl(U))) ⊂ V . Let H = int(cl(int(G))), then by Lemma 4.6 we have

Fn ⊂ H ⊂ cl(H) = α cl(G) ⊂ V . It follows from Lemma 4.7 that Y is weakly normal.

Corollary 4.9 [21]. Weak normality is preserved under almost closed continuous

surjections.
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Lemma 4.10 [23].

(1) A subset A of a space X is rαg-open if and only if F ⊂ α int(A) whenever

F ∈ RC(X) and F ⊂ A.

(2) Every αg-closed set is rαg-closed but not conversely.

Theorem 4.11. The following conditions are equivalent for a space X :

(1) X is mildly normal;

(2) for any disjoint H , K ∈ RC(X) there exist disjoint g̃α-open sets U , V such that

H ⊂ U and K ⊂ V ;

(3) for any disjoint H , K ∈ RC(X) there exist disjoint αg-open sets U , V such that

H ⊂ U and K ⊂ V ;

(4) for any disjoint H , K ∈ RC(X) there exist disjoint rαg-open sets U , V such

that H ⊂ U and K ⊂ V ;

(5) for any H ∈ RC(X) and any V ∈ RO(X) containing H there exists an rαg-open

set U of X such that H ⊂ U ⊂ α cl(U) ⊂ V ;

(6) for any H ∈ RC(X) and any V ∈ RO(X) containing H there exists an α-open

set U of X such that H ⊂ U ⊂ α cl(U) ⊂ V ;

(7) for any disjoint H , K ∈ RC(X) there exist disjoint α-open sets U , V such that

H ⊂ U and K ⊂ V .

P r o o f. It is obvious that (1) ⇒ (2), (2) ⇒ (3) and (3) ⇒ (4).

(4) ⇒ (5). Let H ∈ RC(X) and V ∈ RO(X) containing H . There exist disjoint

rαg-open sets U , W such that H ⊂ U and X − V ⊂ W . By Lemma 4.10, we have

X−V ⊂ α int(W ) and U∩α int(W ) = ∅. Therefore, we obtain α cl(U)∩α int(W ) = ∅

and hence H ⊂ U ⊂ α cl(U) ⊂ X − α int(W ) ⊂ V .

(5) ⇒ (6). Let H ∈ RC(X) and V ∈ RO(X) contain H . There exists an rαg-open

set G in X such that H ⊂ G ⊂ α cl(G) ⊂ V . Since H ∈ RC(X), by Lemma 4.10,

we have H ⊂ α int(G). Put U = α int(G), then U is α-open in X and H ⊂ U ⊂

α cl(U) ⊂ V .

(6) ⇒ (7). Let H and K be any disjoint regular closed sets in X . Then, since

H ⊂ X − K and X − K ∈ RO(X), there exists an α-open set U in X such that

H ⊂ U ⊂ α cl(U) ⊂ X −K. Put V = X −α cl(U), then U and V are disjoint α-open

sets in X such that H ⊂ U and K ⊂ V .

(7) ⇒ (1). Let H and K be any disjoint regular closed sets in X . Then there exist

disjoint α-open sets A and B in X such that H ⊂ A and K ⊂ B. Since A and B are

disjoint, we have int(cl(int(A))) ∩ int(cl(int(B))) = ∅. Now, put U = int(cl(int(A)))

and V = int(cl(int(B))), then U and V are disjoint open sets in X such that H ⊂ U

and K ⊂ V . Therefore, X is mildly normal.

Definition 4.12. A function f : X → Y is said to be
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(1) an R-map [2], almost-continuous [33] if f−1(V ) is regular open, open, respec-

tively, in X for every V ∈ RO(Y );

(2) almost open [33], almost α-open [23] if f(U) is open, α-open, respectively, in Y

for every regular open set U in X ;

(3) α-open [17] if f(U) is α-open in Y for every open set U in X .

R em a r k 4.13 [23]. Both almost-openness and α-openness imply almost α-

openness but not conversely as the following example shows.

E x am p l e 4.14 [23]. Let X = {a, b, c, d} and τ = {∅, {c}, {d}, {a, c}, {c, d},

{a, c, d}, X}. Let Y = {a, b, c} and σ = {∅, Y, {a}, {a, b}}. Then a function f :

(X, τ) → (Y, σ), defined as f(a) = f(d) = a, f(b) = b and f(c) = c, is almost

α-open. However, it is neither almost open nor α-open.

Theorem 4.15. Let f : X → Y be an R-map and an almost αg-closed surjection.

If X is a mildly normal space, then Y is mildly normal.

P r o o f. Let A and B be any disjoint regular closed sets in Y . Then f−1(A)

and f−1(B) are disjoint regular closed sets of X . Since X is mildly normal, there

exist disjoint open sets U and V in X such that f−1(A) ⊂ U and f−1(B) ⊂ V . Put

G = int(cl(U)) and H = int(cl(V )), then G and H are disjoint regular open sets in X

such that f−1(A) ⊂ G and f−1(B) ⊂ H . By Theorem 3.8 [23], there exist αg-open

sets K and L in Y such that A ⊂ K, B ⊂ L, f−1(K) ⊂ G and f−1(L) ⊂ H . Since G

and H are disjoint, so are K and L. It follows from Theorem 4.11 that Y is mildly

normal. �

Corollary 4.16. Let f : X → Y be an R-map and an almost g̃α-closed surjection

and let X be mildly normal. Then Y is mildly normal.

Lemma 4.17 [23]. If a function f : X → Y is almost continuous almost α-open

and V is regular open in Y , then f−1(V ) is regular open in X .

Theorem 4.18. If f : X → Y is an almost α-open almost αg-closed continuous

surjection and X is an almost normal space, then Y is almost normal.

P r o o f. Let B be any closed set of Y and V ∈ RO(Y ) contain B. Since

f is continuous and almost α-open, f−1(B) is closed and f−1(V ) ∈ RO(X) by

Lemma 4.17. Since X is almost normal and f−1(B) ⊂ f−1(V ), there exists U ∈

RO(X) such that f−1(B) ⊂ U ⊂ cl(U) ⊂ f−1(V ) ([32], Theorem 2.1). Since f

is almost α-open and almost αg-closed, f(U) is α-open and f(cl(U)) is αg-closed

in Y . Therefore, we obtain B ⊂ f(U) ⊂ α cl(f(U)) ⊂ α cl(f(cl(U))) ⊂ V . Put

G = int(cl(int(f(U)))). Then G is open in Y and α cl(f(U)) = cl(int(f(U))) = cl(G)
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by Lemma 4.6. Therefore, we obtain B ⊂ f(U) ⊂ G ⊂ cl(G) ⊂ V . It follows from

([32], Theorem 2.1) that Y is almost normal. �

Corollary 4.19 [39]. Almost normality is preserved under almost open almost

g-closed continuous surjections.

5. Regular spaces

In this section, we improve preservation theorems of regularity, almost regularity,

quasi-regularity.

Definition 5.1. A space X is said to be

(1) almost regular [31] if for each F ∈ RC(X) and each x ∈ X − F there exist

disjoint open sets U and V in X such that x ∈ U and F ⊂ V ;

(2) quasi-regular [28] if for every nonempty open set V ofX , there exists a nonempty

open set U in X such that cl(U) ⊂ V ;

(3) strongly s-regular [5] if for any closed set A in X and any point x ∈ X−A there

exists an F ∈ RC(X) such that x ∈ F and F ∩ A = ∅.

It is shown in ([5], Theorem 1) that a space X is strongly s-regular if and only

if every open set in X is the union of regular closed sets. Strongly s-regular spaces

are called P∑-spaces by Wang [38]. Ganster [5] showed that strong s-regularity is

strictly weaker than regularity and is independent of almost regularity.

Theorem 5.2 [23]. The following conditions are equivalent for a space (X, τ):

(1) (X, τ) is regular (almost regular);

(2) for each closed (regular closed) set F and each x ∈ X − F , there exist disjoint

U , V ∈ τα such that x ∈ U and F ⊂ V ;

(3) for each open (regular open, respectively) set V and x ∈ V , there exists U ∈ τα

such that x ∈ U ⊂ α cl(U) ⊂ V .

Theorem 5.3. If f : X → Y is an almost α-open almost g̃α-closed continuous

surjection and X is a regular space, then Y is regular.

P r o o f. Let y be any point of Y and V any open neighbourhood of y. There

exists a point x ∈ X with f(x) = y. Since X is regular and f is continuous, there

exists an open set U in X such that x ∈ U ⊂ cl(U) ⊂ f−1(V ). Therefore, we

have y ∈ f(U) ⊂ f(int(cl(U))) ⊂ f(cl(U)) ⊂ V and f(int(cl(U))) is α-open because

int(cl(U)) ∈ RO(X) and f is almost α-open. Since cl(U) ∈ RC(X) and f is almost

g̃α-closed, f(cl(U)) is g̃α-closed and hence y ∈ f(int(cl(U))) ⊂ α cl(f(int(cl(U)))) ⊂

α cl(f(cl(U))) ⊂ V . It follows from Theorem 5.2 that Y is regular. �
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Corollary 5.4 [23]. Regularity is preserved under almost α-open almost αg-closed

continuous surjections.

Theorem 5.5. If f : X → Y is an almost α-open almost αg-closed almost con-

tinuous surjection and X is an almost regular space, then Y is almost regular.

P r o o f. Let y be any point of Y and let V ∈ RO(Y ) contain y. Since f

is almost α-open almost continuous, f−1(V ) ∈ RO(Y ) by Lemma 4.17. Take a

point x ∈ f−1(y). Since X is almost regular, there exists U ∈ RO(X) such that

x ∈ U ⊂ cl(U) ⊂ f−1(V ) ([31], Theorem 2.2). Hence y ∈ f(U) ⊂ f(cl(U)) ⊂ V .

Since f is almost α-open almost αg-closed, f(U) is α-open in Y and f(cl(U)) is

αg-closed in Y and hence we have y ∈ f(U) ⊂ α cl(f(U)) ⊂ α cl(f(cl(U))) ⊂ V . It

follows from Theorem 5.2 that Y is almost regular. �

Definition 5.6. A function f : X → Y is said to be

(1) feebly continuous [4] if int(f−1(V )) 6= ∅ for every nonempty open set V in Y ;

(2) feebly open [4] if int(f(U)) 6= ∅ for every nonempty open set U in X ;

(3) almost feebly open [23] if int(f(U)) 6= ∅ for every nonempty U ∈ RO(X).

R em a r k 5.7 [23]. It is obvious that every feebly open function is almost feebly

open. However, the converse is not true in general as the following example shows.

E x am p l e 5.8 [23]. Let X = Y = {a, b, c}, τ = {∅, {a}, {b}, {a, b}, {a, c}, X} and

σ = {∅, {a}, {b}, {a, b}, Y }. Let f : (X, τ) → (Y, σ) be a function defined as follows:

f(a) = c, f(b) = a and f(c) = b. Then f is almost feebly open but it is not feebly

open since we have RO(X, τ) = {∅, {b}, {a, c}, X} and int(f({a})) = ∅.

Theorem 5.9. If f : X → Y is an almost feebly open feebly continuous almost

g̃α-closed surjection and X is a quasi-regular space, then Y is quasi-regular.

P r o o f. Let V be any nonempty open set in Y . Since f is feebly continuous,

int(f−1(V )) 6= ∅ and by the quasi-regularity of X there exists a nonempty open set

U of X such that U ⊂ cl(U) ⊂ int(f−1(V )). We have f(int(cl(U))) ⊂ f(cl(U)) ⊂ V .

Since f is almost feebly open, int(f(int(cl(U)))) 6= ∅. Since f is almost g̃α-closed,

f(cl(U)) is g̃α-closed and hence α cl(f(cl(U))) ⊂ V . Now, put G = int(f(int(cl(U)))),

then by Lemma 4.6 we obtain ∅ 6= G ⊂ cl(G) = α cl(G) ⊂ α cl(f(cl(U))) ⊂ V . This

shows that Y is quasi-regular. �

Corollary 5.10 [9]. Quasi regularity is preserved under feebly open feebly con-

tinuous closed surjections.

We conclude the section with a preservation theorem of strongly s-regular spaces.
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Theorem 5.11. If f : X → Y is an almost α-open almost g̃α-closed continuous

surjection and X is a strongly s-regular space, then Y is strongly s-regular.

P r o o f. Let V be any open set in Y and y any point of V . Since f is con-

tinuous, f−1(V ) is open in X . For a point x ∈ f−1(y) there exists F ∈ RC(X)

such that x ∈ F ⊂ f−1(V ); hence y = f(x) ∈ f(F ) ⊂ V . Since f is continu-

ous, we have f(F ) = f(cl(int(F ))) ⊂ cl(f(int(F ))). Since f is almost g̃α-closed,

f(F ) is g̃α-closed and α cl(f(F )) ⊂ V . Moreover, f is almost α-open, f(int(F ))

is α-open in Y and by Lemma 4.6 we have cl(f(int(F ))) = cl(int(f(int(F )))) =

α cl(f(int(F ))) ⊂ α cl(f(F )). Therefore, we obtain cl(int(f(int(F )))) ∈ RC(Y ) and

y ∈ f(F ) ⊂ cl(f(int(F ))) = cl(int(f(int(F )))) ⊂ α cl(f(F )) ⊂ V . It follows from

([5], Theorem 1) that Y is strongly s-regular. �

6. Minimal structures

Definition 6.1 [26]. Let X be a nonempty set and ℘(X) the power set of X .

A subfamily mx of ℘(X) is called a minimal structure (briefly m-structure) on X if

∅ ∈ mx and X ∈ mx.

Each member of the minimal structure mx is called mx-open. The complement of

an mx-open set is said to be mx-closed and the pair (X, mx) is called an m-space.

R em a r k 6.2. Let (X, τ) be a topological space. Then, by Definition 2.2(7), the

family of g̃α-open sets is an m-structure on X .

Definition 6.3 [15]. Let X be a nonempty set and mx an m-structure on X .

For a subset A of X , the mx-closure of A and the mx-interior of A are defined as

follows:

(1) mx-cl(A) =
⋂
{F : A ⊂ F, X − F ∈ mx},

(2) mx-int(A) =
⋃
{U : U ⊂ A, U ∈ mx}.

Theorem 6.4 [15]. Let X be a nonempty set and mx a minimal structure on X .

For subsets A and B of X , the following assertions hold:

(1) mx-cl(X − A) = X − (mx-int(A)) and mx-int(X − A) = X − (mx-cl(A)),

(2) If X − A ∈ mx, then mx-cl(A) = A and if A ∈ mx, then mx-int(A) = A,

(3) mx-cl(∅) = ∅, mx-cl(X) = X , mx-int(∅) = ∅ and mx-int(X) = X ,

(4) If A ⊂ B, then mx-cl(A) ⊂ mx-cl(B) and mx-int(A) ⊂ mx-int(B),

(5) A ⊂ mx-cl(A) and mx-int(A) ⊂ A,

(6) mx-cl(mx-cl(A)) = mx-cl(A) and mx-int(mx-int(A)) = mx-int(A).
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Definition 6.5 [15]. A minimal structure mx on a nonempty set X is said to

have the property (B) if the union of any family of subsets belonging to mx belongs

to mx.

R em a r k 6.6. Let (X, τ) be a topological space. Then, by Definition 2.2 (7), the

family of g̃α-open sets is an m-structure on X having the property (B).

Definition 6.7 [18]. Let (X, mx) be a minimal structure and A ⊂ X . A subset

A of X is called an αmx-open set if A ⊆ mx-int(mx-cl(mx-int(A))).

The complement of an αmx-open set is called an αmx-closed set.

The family of all αmx-open sets in X will be denoted by αM(X).

Definition 6.8 [18]. Let (X, mx) be a minimal structure. For a subset A of X ,

the α-closure of A and the α-interior of A, denoted by αmx-cl(A) and αmx-int(A),

respectively, are defined as follows:

(1) αmx-cl(A) =
⋂
{F : A ⊂ F , F is αmx-closed in X},

(2) αmx-int(A) =
⋃
{U : U ⊂ A, U is αmx-open in X}.

Definition 6.9 [19]. Let (X, mx) be a space with a minimal structure mx on X

and A ⊂ X . A subset A of X is called an mx-semiopen set if A ⊆ mx-cl(mx-int(A)).

The complement of an mx-semiopen set is called an mx-semiclosed set.

Definition 6.10 [19]. Let (X, mx) be a space with a minimal structure mx on

X . For a subset A of X , the mx-semi-closure of A and the mx-semi-interior of A,

denoted by mx-s cl(A) and mx-s int(A), respectively, are defined as follows:

(1) mx-s cl(A) =
⋂
{F : A ⊂ F , F is mx-semiclosed in X},

(2) mx-s int(A) =
⋃
{U : U ⊂ A, U is mx-semiopen in X}.

Definition 6.11 [30]. Let (X, mx) be a minimal structure and A ⊂ X . A subset

A of X is called an mx-regular open set if A = mx-int(mx-cl(A)).

The complement of an mx-regular open set is called an mx-regular closed set.

The family of all mx-regular closed, mx-regular open sets of (X, mx) is denoted

by RC(X, mx), RO(X, mx), respectively.

Proposition 6.12. Every mx-regular open set is mx-open but not conversely.

P r o o f. Let A be an mx-regular open set in X . Since A = mx-int(mx-cl(A))

then mx-int(A) = mx-int(mx-cl(A)). We have A = mx-int(A). Thus A is mx-open.

�

E x am p l e 6.13. Let X = {a, b, c}. Define the m-structure on X as follows:

mx = {∅, X, {a}, {c}, {a, b}, {a, c}, {b, c}}. Then RO(X, mx) = {∅, X, {a}, {c}, {a, b},

{b, c}}. Here A = {a, c} is mx-open but not mx-regular open.
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Definition 6.14 [30]. Let (X, mx) be an m-space. We say that A ⊆ X is

(1) an mx-ĝ-closed set if mx-cl(A) ⊆ U whenever A ⊆ U and U is mx-semiopen in

(X, mx). The complement of an mx-ĝ-closed set is called an mx-ĝ-open set;

(2) an mx-
∗g-closed set if mx-cl(A) ⊆ U whenever A ⊆ U and U is mx-ĝ-open in

(X, mx). The complement of an mx-
∗g-closed set is called an mx-

∗g-open set;

(3) an mx-
♯g-semi-closed (briefly mx-

♯gs-closed) set if mx-s cl(A) ⊆ U whenever

A ⊆ U and U is mx-
∗g-open in (X, mx). The complement of an mx-

♯gs-closed

set is called an mx-
♯gs-open set.

Definition 6.15. Let (X, mx) be an m-space. We say that A ⊆ X is an mx-g̃α-

closed set if αmx-cl(A) ⊆ U whenever A ⊆ U and U is mx-
♯gs-open in (X, mx). The

complement of an mx-g̃α-closed set is called an mx-g̃α-open set.

Proposition 6.16. Every mx-closed set is mx-g̃α-closed but not conversely.

P r o o f. Let A be an mx-closed set and G any mx-
♯gs-open set containing A.

Since A is mx-closed, we have αmx-cl(A) ⊆ mx-cl(A) = A ⊆ G. Hence A is mx-g̃α-

closed. �

E x am p l e 6.17. Let X = {a, b, c}. Define the m-structure on X as follows:

mx = {∅, X, {a}, {b}}. Then the sets in {∅, X, {c}, {a, c}, {b, c}} are called mx-g̃α-

closed and the sets in {∅, X, {a, c}, {b, c}} are called mx-closed. Here A = {c} is

mx-g̃α-closed but not mx-closed.

Definition 6.18 [24]. A function f : (X, mx) → (Y, my) is said to be M -closed

if for each mx-closed set F of X , f(F ) is my-closed in Y .

Theorem 6.19 [24]. For a function f : (X, mx) → (Y, my) where my has the

property (B), the following properties are equivalent:

(1) f is M -closed.

(2) For each subset F of Y and each U ∈ mx with f−1(F ) ⊂ U , there exists V ∈ my

such that F ⊂ V and f−1(V ) ⊂ U .

(3) For each y ∈ Y and each U ∈ mx with f−1(y) ⊂ U , there exists V ∈ my

containing y such that f−1(V ) ⊂ U .

Definition 6.20. A function f : (X, mx) → (Y, my) is said to be almost-M -g̃α-

closed if for each F ∈ RC(X, mx), f(F ) is my-g̃α-closed in Y .

R em a r k 6.21. Every M -closed function is almost M -g̃α-closed but not con-

versely.

E x am p l e 6.22. Let X = Y = {a, b, c}. Define the m-structure on X and

Y as follows: mx = {∅, X, {a}, {b}} and my = {∅, Y, {a}, {a, b}, {b, c}}. Then
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RC(X, mx) = {∅, X, {a, c}, {b, c}}; the sets in {∅, X, {a, c}, {b, c}} are called mx-

closed; the sets in {∅, Y, {a}, {c}, {b, c}} are called my-closed and the sets in

{∅, Y, {a}, {c}, {a, c}, {b, c}} are called my-g̃α-closed. Then the identity function

f : (X, mx) → (Y, my) is almost M -g̃α-closed. However, it is not M -closed since

f({a, c}) = {a, c} is not my-closed.

Theorem 6.23. A surjection f : (X, mx) → (Y, my) is almostM -g̃α-closed if and

only if for each subset S of (Y, my) and each U ∈ RO(X, mx) containing f−1(S)

there exists an m-g̃α-open set V of (Y, my) such that S ⊂ V and f−1(V ) ⊂ U .

P r o o f. Necessity. Suppose that f is almost M -g̃α-closed. Let S be a subset of

(Y, my) and let U ∈ RO(X, mx) contain f−1(S). Put V = Y − f(X − U), then V is

an my-g̃α-open set of (Y, my) such that S ⊂ V and f−1(V ) ⊂ U .

Sufficiency. Let F be anymx-regular closed set in (X, mx). Then f−1(Y −f(F )) ⊂

X − F and X − F ∈ RO(X, mx). There exists an my-g̃α-open set V of (Y, my) such

that Y − f(F ) ⊂ V and f−1(V ) ⊂ X − F . Therefore, we have f(F ) ⊃ Y − V and

F ⊂ f−1(Y − V ). Hence, we obtain f(F ) = Y − V and f(F ) is my-g̃α-closed in

(Y, my). This shows that f is almost M -g̃α-closed.

R em a r k 6.24. Theorem 3.13 is a particular case of Theorem 6.23 if τ = mx.
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