Photosynthetica, 2007 (vol. 45), issue 1

Photosynthetica 2007, 45(1):30-35 | DOI: 10.1007/s11099-007-0005-5

Variations in daytime net carbon and water exchange in a montane shrubland ecosystem in southeast Spain

P. Serrano-Ortiz1,*, A. S. Kowalski1, F. Domingo2,4, A. Rey2, E. Pegoraro2, L. Villagarcía3, L. Alados-Arboledas1
1 Department of Applied Physics, University of Granada, Granada, Spain
2 Arid Zones Research Station (Estación Experimental de Zonas Áridas), CSIC, Almería, Spain
3 Department of Environmental Sciences, University of Pablo Olavide, Sevilla, Spain
4 Department of Vegetal Biology and Ecology, University of Almería, Almería, Spain

Carbon and water fluxes in a semiarid shrubland ecosystem located in the southeast of Spain (province of Almería) were measured continuously over one year using the eddy covariance technique. We examined the influence of environmental variables on daytime (photosynthetically active photons, F P >10 µmol m-2 s-1) ecosystem gas exchange and tested the ability of an empirical eco-physiological model based on F P to estimate carbon fluxes over the whole year. The daytime ecosystem fluxes showed strong seasonality. During two solstitial periods, summer with warm temperatures (>15 °C) and sufficient soil moisture (>10 % vol.) and winter with mild temperatures (>5 °C) and high soil moisture contents (>15 % vol.), the photosynthetic rate was higher than the daytime respiration rate and mean daytime CO2 fluxes were ca. -1.75 and -0.60 µmol m-2 s-1, respectively. Daytime evapotranspiration fluxes averaged ca. 2.20 and 0.24 mmol m-2 s-1, respectively. By contrast, in summer and early autumn with warm daytime temperatures (>10 °C) and dry soil (<10 % vol.), and also in mid-winter with near-freezing daytime temperatures the shrubland behaved as a net carbon source (mean daytime CO2 release of ca. 0.60 and 0.20 µmol m-2 s-1, respectively). Furthermore, the comparison of water and carbon fluxes over a week in June 2004 and June 2005 suggests that the timing-rather than amount-of spring rainfall may be crucial in determining growing season water and carbon exchange. Due to strongly limiting environmental variables other than F P, the model applied here failed to describe daytime carbon exchange only as a function of F P and could not be used over most of the year to fill gaps in the data.

Keywords: carbon dioxide flux; eddy covariance; phenology; photon flux density; shrubland; water vapour flux

Received: February 17, 2006; Accepted: May 12, 2006; Published: March 1, 2007Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Serrano-Ortiz, P., Kowalski, A.S., Domingo, F., Rey, A., Pegoraro, E., Villagarcía, L., & Alados-Arboledas, L. (2007). Variations in daytime net carbon and water exchange in a montane shrubland ecosystem in southeast Spain. Photosynthetica45(1), 30-35. doi: 10.1007/s11099-007-0005-5.
Download citation

References

  1. Asner, G.P., Archer, S., Hughes, R.F., Ansley, R.J., Wessman, C.A.: Net changes in regional woody vegetation cover and carbon storage in Texas Dryland 1937-1999.-Global Change Biol. 9: 316-335, 2003. Go to original source...
  2. Domingo, F., Villagarcía, L., Brenner, A.J., Puigdefábregas, J.: Evapotranspiration model for semi-arid shrub-lands tested against data from SE Spain.-Agr. Forest Meteorol. 95: 67-84, 1999. Go to original source...
  3. Falge, E., Baldocchi, D.D., Olson, R., Anthoni, P.M., Aubinet, M., Bernhofer, C., Burba, G., Ceulemans, R., Clement, R., Dolman, A.J., Granier, A., Gross, P., Grünwald, T., Hollinger, D., Jensen, N.O., Katul, G.G., Keronen, P., Kowalski, A.S., Lai, C.T., Law, B.E., Meyers, T.P., Moncrieff, J.B., Moors, E.J., Munger, J.W., Pilegaard, K., Rannik, Ü., Rebmann, C., Suyker, A.E., Tenhunen, J.D., Tu, K., Verma, S.B., Vesala, T., Wilson, K.B., Wofsy, S.C.: Gap filling strategies for defensible annual sums of net ecosystem exchange.-Agr. Forest Meteorol. 107: 43-69, 2001. Go to original source...
  4. Gorissen, A., Tietema, A., Joosten, N.N., Estiarte, M., Peñuelas, J., Sowerby, A., Emmett, B.A., Beier, C.: Climate change affects carbon allocation to the soil in shrublands.-Ecosystems 7: 650-661, 2004. Go to original source...
  5. Hasting, S.J., Oechel, W.C., Muhlia-Melo, A.: Diurnal, seasonal and annual variation in the net ecosystem CO2 exchange of a desert shrub community (Sarcocaulescent) in Baja California, Mexico.-Global Change Biol. 11: 1-13, 2005. Go to original source...
  6. Hunt, J.E., Kelliher, F.M., Mcseveny, T.M., Byers, J.N.: Evaporation and carbon dioxide exchange between the atmosphere and a tussock grassland during a summer drought.-Agr. Forest Meteorol. 111: 65-82, 2002. Go to original source...
  7. Hunt, J.E., Kelliher, F.M., Mcseveny, T.M., Ross, D.J., Whitehead, D.: Long-term carbon exchange in a sparse, seasonally dry tussock grassland.-Global Change Biol. 10: 1875-1800, 2004.
  8. Huxman, T.E., Snyder, K.A., Tissue, D., Leffler, A.J., Ogle, K., Pockman, W.T., Sandquist, D.R., Potts, D.L., Schwinning, S.: Precipitation pulses and carbon fluxes in semiarid and arid ecosystems.-Oecologia 141: 254-268, 2004. Go to original source...
  9. Kowalski, A.S., Loustau, D., Berbigier, P., Manca, G., Tedeschi, V., Borghetti, M., Valentini, R., Pasikolari, Berninger, F., Rannik, Ü., Hari, P., Rayment, M., Mencuccini, M., Moncrieff, J.B., Grace, J.: Paired comparisons of carbon exchange between undisturbed and regenerating stands in four managed forests in Europe.-Global Change Biol. 10: 1-17, 2004. Go to original source...
  10. Kowalski, S., Sartorem, M., Burlett, R., Berbigier, P., Loustau, D.: The annual carbon budget of a French pine forest (Pinus pinaster) following harvest.-Global Change Biol. 9: 1051-1065, 2003. Go to original source...
  11. McMillen, R.T.: An eddy correlation technique with extended applicability to non-simple terrain.-Boundary-Layer Meteorol. 43: 231-245, 1988. Go to original source...
  12. Moncrieff, J.B., Massheder, J.M., Bruin, H., Elbers, J., Friborg, T., Heusinkveld, B., Kabat, P., Scott, S., Soegaard, H., Verhoef, A.: A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide.-J. Hydrol. 188-189: 589-611, 1997. Go to original source...
  13. Noy-Meir, I.: Desert ecosystems: environment and producers.-Annu. Rev. Ecol. Systematics 4: 25-51, 1973. Go to original source...
  14. Okin, G.S.: Wind-Driven Desertification: Process Modeling, Remote Monitoring, and Forecasting.-Pp. 1-12. California Institute of Technology, Pasadena 2001.
  15. Rambal, S., Ourcival, J.M., Joffre, R., Mouillot, F., Nouvellon, Y., Reichstein, M., Rocheteau, A.: Drought controls over conductance and assimilation of a Mediterranean evergreen ecosystem: scaling from leaf to canopy.-Global Change Biol. 9: 1813-1824, 2003.
  16. Reichstein, M., Tenhunen, J.D., Roupsard, O., Ourcival, J.M., Rambal, S., Miglietta, F., Peressotti, A., Pecchiari, M., Tirone, G., Valentini, R.: Severe drought effects on ecosystem CO2 and H2O fluxes at three Mediterranean evergreen sites: revision of current hypotheses?-Global Change Biol. 8: 999-1007, 2002. Go to original source...
  17. Rey, A., Pegoraro, E., Tedeschi, V., De Parri, I., Jarvis, P.J., Valentini, R.: Annual variation in soil respiration and its components in a coppice oak forest in Central Italy.-Global Change Biol. 8: 851-866, 2002. Go to original source...
  18. Rey, A., Pepsikos, C., Jarvis, P., Grace, J.: Effect of temperature and moisture on rates of carbon mineralization in a Mediterranean oak forest soil under controlled and field conditions.-Eur. J. Soil Sci. 56: 589-599, 2005. Go to original source...
  19. Schlesinger, W., Reynolds, J., Cunningham, G., Huenneke, L.F., Jarrel, W.M., Virginia, R.A., Whitford, W.G.: Biological feedbacks in global desertification.-Science 247: 1043-1048, 1990. Go to original source...
  20. Schwinning, S., Sala, O.E.: Hierarchy of responses to resource pulses in arid and semi-arid ecosystems.-Oecologia 141: 211-220, 2004. Go to original source...
  21. Schwinning, S., Sala, O.E., Loik, M.E., Ehleringer, J.R.: Thresholds, memory, and seasonality: understanding pulse dynamics in arid/semi-arid ecosystems.-Oecologia 141: 191-192, 2004. Go to original source...
  22. Scott, R.L., Watts, C., Payan, J.G., Edwards, E., Goodrich, D.C., Williams, W., Shuttleworth, J.: The understory and overstory partitioning of energy and water fluxes in an open canopy, semiarid woodland.-Agr. Forest Meteorol. 114: 127-139, 2003. Go to original source...
  23. Smith, S.D., Huxman, T.E., Zitzer, S.F., Charlet, T.N., Housman, D.C., Coleman, J.S., Fenstermakerk, L.K., Seemann, J.R., Nowak, R.S.: Elevated CO2 increases productivity and invasive species success in an arid ecosystem.-Nature 408: 79-82, 2000. Go to original source...
  24. Soil Survey Staff: Soil Taxonomy, a Basic System of Soil Classification for Marking and Interpreting Soil Surveys. 2nd Ed.-Agriculture Handbook, 436, Washington 1999.
  25. Suyker, A.E., Verma, S.B.: Year-round observations of the net ecosystem exchange of carbon dioxide in a native tallgrass prairie.-Global Change Biol. 7: 279-289, 2001. Go to original source...
  26. UNEP: World Atlas of Desertification. 2nd Ed.-United Nations Environment Programme, Nairobi 1997.
  27. Webb, E.K., Pearman, G.I., Leuning, R.: Correction of flux measurements for density effects due to heat and water vapor transfer.-Quart. J. roy. meteorol. Soc. 106: 85-100, 1980. Go to original source...