Photosynthetica, 2015 (vol. 53), issue 4

Photosynthetica 2015, 53(4):572-584 | DOI: 10.1007/s11099-015-0131-4

Physiological responses of halophytic C4 grass Aeluropus littoralis to salinity and arbuscular mycorrhizal fungi colonization

R. Hajiboland1,2,*, F. Dashtebani2, N. Aliasgharzad1,3
1 Center of Excellence for Biodiversity, University of Tabriz, Tabriz, Iran
2 Plant Science Department, University of Tabriz, Tabriz, Iran
3 Soil Science Department, University of Tabriz, Tabriz, Iran

The halophytic C4 grass, Aeluropus littoralis, was cultivated under low (50 mM) and high (200 mM) NaCl salinity and inoculated with the arbuscular mycorrhizal fungi (AMF) Claroideoglomus etunicatum in a sand culture medium for 20 weeks. Shoot and root dry mass increased under salinity conditions up to 24 and 86%, respectively. Although the root colonization rate significantly decreased in the presence of salt, AMF-colonized (+AMF) plants had higher biomass compared with plants without AMF colonization (-AMF) only under saline conditions. Net CO2 assimilation rate increased significantly by both salinity levels despite stable stomatal opening. In contrast, AMF-mediated elevation of the net CO2 assimilation rate was associated with a higher stomatal conductance. Unexpectedly, leaf activity of phosphoenolpyruvate carboxylase decreased by salinity and AMF colonization. Transpiration rate was not affected by treatments resulting in higher water-use efficiency under salinity and AMF conditions. Concentrations of soluble sugars and free α-amino acids increased by both salinity and AMF treatments in the shoot but not in the roots. Proline concentration in the leaves was higher in the salt-treated plants, but AMF colonization did not affect it significantly. Leaf activity of nitrate reductase increased by both salinity and AMF treatments. Mycorrhizal plants had significantly higher Na+ and K+ uptake, while Ca2+ uptake was not affected by salt or AMF colonization. The ratio of K+/Na+ increased by AMF in the shoot while it decreased in the roots. Leaf osmotic potential was lowered under salinity in both +AMF and -AMF plants. Our results indicated that higher dry matter production in the presence of salt and AMF could be attributed to higher CO2 and nitrate assimilation rates in the leaves. Higher leaf accumulation of soluble sugars and α-amino acids but not proline and elevated water-use efficiency were associated with the improved growth of A. littoralis inoculated with AMF.

Keywords: carotenoids; chlorophyll content; compatible solute; gas exchange; growth parameters; water relations

Received: September 17, 2014; Accepted: January 19, 2015; Published: December 1, 2015Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Hajiboland, R., Dashtebani, F., & Aliasgharzad, N. (2015). Physiological responses of halophytic C4 grass Aeluropus littoralis to salinity and arbuscular mycorrhizal fungi colonization. Photosynthetica53(4), 572-584. doi: 10.1007/s11099-015-0131-4.
Download citation

References

  1. Akhani H.: Biodiversity of halophytic and Sabkha ecosystems of Iran. - In: Khan M.A., Barth H., Kust G.C., Böer B. (ed.): Sabkha Ecosystems. Vol II: The Southern and Central Asian Countries. Pp. 71-88. Springer, New York 2006. Go to original source...
  2. Aliasgharzadeh N., Saleh Rastin N., Towfighi H., Alizadeh A.: Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil. - Mycorrhiza 11: 119-122, 2001. Go to original source...
  3. Ashraf M., Harris P.J.C.: Potential biochemical indicators of salinity tolerance in plants. - Plant Sci. 166: 3-16, 2004. Go to original source...
  4. Ashton R.A., Burnell J.N., Furbank R.T. et al.: Enzymes of C4 photosynthesis. - In: Dey P.M., Harborne J.B. (ed.): Methods in Plant Biochemistry. Vol 3: Enzymes of Primary Metabolism. Pp. 39-72. Academic Press, London 1990. Go to original source...
  5. Augé R.M.: Stomatal behavior of arbuscular mycorrhizal plants. - In: Kapulnik Y., Douds D.D. (ed.): Arbuscular Mycorrhizas: Physiology and Function. Pp. 201-237. Kluwer Academic, Dordrecht 2000. Go to original source...
  6. Barhoumi Z., Djebali W., Smaoui A. et al.: Contribution of NaCl excretion to salt resistance of Aeluropus littoralis (Willd) Parl. - J. Plant Physiol. 164: 842-850, 2007. Go to original source...
  7. Bates L.S., Waldren R.P., Teare I.D.: Rapid determination of free proline for water-stress studies. - Plant Soil 39: 205-207, 1973. Go to original source...
  8. Biswal A.K., Pattanayak G.K., Pandey S.S. et al.: Light intensitydependent modulation of chlorophyll b biosynthesis and photosynthesis by overexpression of chlorophyllide a oxygenase in tobacco. - Plant Physiol. 159: 433-449, 2012. Go to original source...
  9. Caldwell M.M.: Physiology of desert halophytes. - In: Mold R.J. (ed.): Ecology of Halophytes. Pp. 357-378. Elsevier, New York 2012.
  10. Cataldo D.A., Maroon M., Schrader L.E. et al.: Rapid colorimetric determination of nitrate in plant tissues by nitration of salicylic acid. - Commun. Soil Sci. Plan. 6: 71-80, 1975.
  11. Chaves M.M., Flexas J., Pinheiro C.: Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. - Ann. Bot.-London 103: 551-560, 2009. Go to original source...
  12. Clayton W.D., Vorontsova M.S., Harman K.T., Williamson H.: Grass Base - The Online World Grass Flora. - http://www.kew.org/data/grasses-db.html [accessed 13 Aug 2014].
  13. Dashtebani F., Hajiboland R., Aliasgharzad N.: Characterization of salt-tolerance mechanisms in mycorrhizal (Claroideoglomus etunicatum) halophytic grass, Puccinellia distans. - Acta Physiol. Plant. 36: 1713-1726, 2014. Go to original source...
  14. Eimanifar A., Mohebbi F.: Urmia Lake (Northwest Iran): a brief review. - Saline Syst. 3: doi:10.1186/1746-1448-3-5, 2007. Go to original source...
  15. Evelin H., Kapoor R., Giri B.: Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. - Ann Bot.-London 104: 1263-1280, 2009. Go to original source...
  16. Feldmam S.R., Bisaro V., Biani N.B., Prado D.E.: Soil salinity determines the relative abundance of C3/C4 species in Argentinean grasslands. - Global Ecol. Biogeogr. 17: 708-714, 2008. Go to original source...
  17. Flowers T.J., Colmer T.D.: Salinity tolerance in halophytes. - New Phytol. 179: 945-963, 2008. Go to original source...
  18. Foyer C.H., Parry M., Noctor G.: Markers and signals associated with nitrogen assimilation in higher plants. - J. Exp. Bot. 54: 585-593, 2003. Go to original source...
  19. Füzy A., Biró B., Tóth T. et al.: Drought, but not salinity, determines the apparent effectiveness of halophytes colonized by arbuscular mycorrhizal fungi. - J. Plant Physiol. 165: 1181-1192, 2008. Go to original source...
  20. Ge Z.-M., Zhang L.-Q., Yuan L., Zhang C.: Effects of salinity on temperature-dependent photosynthetic parameters of a native C3 and a non-native C4 marsh grass in the Yangtze Estuary, China. - Photosynthetica 52: 484-492, 2014. Go to original source...
  21. Geissler N., Hussin S., Koyro H-W.: Interactive effects of NaCl salinity and elevated atmospheric CO2 concentration on growth, photosynthesis, water relations and chemical composition of the potential cash crop halophyte Aster tripolium L. - Environ. Exp. Bot. 65: 220-231, 2009. Go to original source...
  22. Gil R., Lull C., Boscaiu M. et al.: Soluble carbohydrates as osmolytes in several halophytes from a Mediterranean salt marsh. - Not. Bot. Horti. Agrobo. 39: 9-17, 2011. Go to original source...
  23. Giovanetti M., Mosse B.: An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. - New Phytol. 84: 489-500, 1980. Go to original source...
  24. Giri B., Mukerji K.G.: Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. - Mycorrhiza 14: 307-312, 2004. Go to original source...
  25. Gulzar S., Khan M.A., Ungar I.A.: Effects of salinity on growth, ionic content, and plant-water status of Aeluropus lagopoides. - Commun. Soil Sci. Plan. 34: 1657-1668, 2003.
  26. Hajiboland R.: Reactive oxygen species and photosynthesis. - In: Ahmad P. (ed.): Oxidative Damage to Plants, Antioxidant Networks and Signaling. Pp. 1-63. Elsevier, London 2014. Go to original source...
  27. Hajiboland R.: Role of arbuscular mycorrhiza in amelioration of salinity. - In: Ahmad P., Azzoz M.M., Prasad M.N.V. (ed.): Salt Stress in Plants, Signaling, Omics and Adaptations. Pp. 301-354. Springer, New York 2013. Go to original source...
  28. Hamilton E.W., McNaughton S.J., Coleman J.S.: Molecular, physiological and growth responses to sodium stress in C4 grasses from a soil salinity gradient in the Serengeti ecosystem. - Am. J. Bot. 88: 1258-1265, 2001. Go to original source...
  29. Hawkesford M., Horst W., Kichey T. et al.: Functions of macronutrients. - In: Marschner P. (ed.): Marschner's Mineral Nutrition of Higher Plants, 3rd Edition. Pp. 135-189. Elsevier, Oxford 2012. Go to original source...
  30. Hussin S., Geissler N., Koyro H.W.: Effect of NaCl salinity on Atriplex nummularia (L.) with special emphasis on carbon and nitrogen metabolism. - Acta Physiol. Plant. 35: 1025-1038, 2013. Go to original source...
  31. Jaworski E.G.: Nitrate reductase assay in intact plant tissues. - Biochem. Bioph. Res. Co. 43: 1274-1279, 1971. Go to original source...
  32. Kronzucker H.J., Coskun D., Schulze L.M. et al.: Sodium as nutrient and toxicant. - Plant Soil 369: 1-23, 2013. Go to original source...
  33. Lin Z., Peng C., Xu X. et al.: Thermostability of photosynthesis in two new chlorophyll b-less rice mutants. - Sci. China C. Life Sci. 48: 139-147, 2005. Go to original source...
  34. Lichtenthaler H.K., Wellburn A.R.: Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. - Biol. Soc. Trans. 11: 591-592, 1985.
  35. Lovelock C.E., Ball M.C.: Influence of salinity on photosynthesis of halophytes. - In: Läuchli A., Lüttge U. (ed.): Salinity: Environment, Plants, Molecules. Pp. 315-339, Kluwer Academic Publishers, Dordrecht 2002. Go to original source...
  36. Maricle B.R., Lee R.W., Hellquist C.E. et al.: Effects of salinity on chlorophyll fluorescence and CO2 fixation in C4 estuarine grasses. - Photosynthetica 45: 433-440, 2007. Go to original source...
  37. Meinzer F.C., Zhu J.: Efficiency of C4 photosynthesis in Atriplex lentiformis under salinity stress. - Aust. J. Plant Physiol. 26: 79-86, 1999. Go to original source...
  38. Nieva F.J.J., Castellanos E.M., Figueroa M.E., Gil F.: Gas exchange and chlorophyll fluorescence of C3 and C4 saltmarsh species. - Photosynthetica 36: 397-406, 1999. Go to original source...
  39. Porcel R., Aroca R., Ruiz-Lozano J.M.: Salinity stress alleviation using arbuscular mycorrhizal fungi. - Agron. Sustain. Dev. 32: 181-200, 2012. Go to original source...
  40. Rakhmankulova Z.F., Voronin P.Yu., Shuyskaya E.V. et al.: Effect of NaCl and isoosmotic polyethylene glycol stress on gas exchange in shoots of the C4 xerohalophyte Haloxylon aphyllum (Chenopodiaceae). - Photosynthetica 52: 437-443, 2014. Go to original source...
  41. Rozema J., Schat H.: Salt tolerance of halophytes, research questions reviewed in the perspective of saline agriculture. - Environ. Exp. Bot. 92: 83-95, 2013. Go to original source...
  42. Ruiz-Lozano J.M., Porcel R., Azcón C., Aroca R.: Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. - J. Exp. Bot. 63: 4033-4044, 2012. Go to original source...
  43. Sage R.F.: Environmental and evolutionary preconditions for the origin and diversification of the C4 photosynthetic syndrome. - Plant Biol. 3: 202-213, 2001. Go to original source...
  44. Sawers R.J.H., Gutjahr C., Paszkowski U.: Cereal mycorrhiza: an ancient symbiosis in modern agriculture. - Trends Plant Sci. 13: 93-97, 2008. Go to original source...
  45. Shabala S.N., Mackay A.: Ion transport in halophytes. - Adv. Bot. Res.57: 151-199, 2011. Go to original source...
  46. Smith S.E., Read D.J.: Mycorrhizal Symbiosis. Pp. 787. Academic Press, San Diego 2008.
  47. Talaat N.B., Shawky B.T.: Modulation of nutrient acquisition and polyamine pool in salt-stressed wheat (Triticum aestivum L.) plants inoculated with arbuscular mycorrhizal fungi. - Acta Physiol. Plant. 35: 2601-2610, 2013. Go to original source...
  48. Wang F.Y., Liu R.J., Lin X.G., Zhou J.M.: Arbuscular mycorrhizal status of wild plants in saline-alkaline soils of the Yellow River Delta. - Mycorrhiza 14: 133-137, 2004.
  49. Yemm E.W., Cocking E.C.: The determination of amino acids with ninhydrin. - Analyst 80: 209-213, 1955. Go to original source...
  50. Yemm E.W., Willis A.J.: The estimation of carbohydrates extracts by anthrone. - Biochem. J. 57: 508-514, 1954. Go to original source...
  51. Yuan J.-F., Feng G., Ma H.-Y., Tian C.-Y.: Effect of nitrate on root development and nitrogen uptake of Suaeda physophora under NaCl salinity. - Pedosphere 20: 536-544, 2010. Go to original source...