Photosynthetica, 2018 (vol. 56), issue 2
Photosynthetica 2018, 56(2):557-566 | DOI: 10.1007/s11099-017-0712-5
The positive roles of exogenous putrescine on chlorophyll metabolism and xanthophyll cycle in salt-stressed cucumber seedlings
- 1 Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- 2 Nanjing Agricultural University (Suqian) Academy of Protected Horticulture, Suqian, China
The effects of foliar spray of putrescine (Put; 8 mM) on chlorophyll (Chl) metabolism and xanthophyll cycle in cucumber seedlings were investigated under saline conditions of 75 mM NaCl. Exogenous Put promoted the conversion of uroporhyrinogen III to protoporphyrin IX and alleviated decreases in Chl contents and in a size of the xanthophyll cycle pool under salt stress. Moreover, the Put treatment reduced the activities of uroporphyrinogen III synthase, chlorophyllase, and Mg-dechelatase and downregulated the transcriptional levels of glutamyl-tRNA reductase, 5-aminolevulinate dehydratase, uroporphyrinogen III synthase, uroporphyrinogen III decarboxylase, and chlorophyllide a oxygenase, but significantly increased the expression levels of non-yellow coloring 1-like, pheide a oxygenase, red chlorophyll catabolite reductase, and violaxanthin de-epoxidase. Taken together, these results suggest that Put might improve Chl metabolism and xanthophyll cycle by regulating enzyme activities and mRNA transcription levels in a way that improved the salt tolerance of cucumber plants.
Keywords: chlorophyll biosynthesis; chlorophyll degradation; de-epoxidation; energy dissipation; light-harvesting complex; pigments
Received: May 18, 2016; Accepted: November 14, 2016; Published: June 1, 2018Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
Supplementary files
Download file | phs-201802-0011_S1.pdf File size: 289.6 kB |
References
- Alawady A.E., Grimm B.: Tobacco Mg protoporphyrin IX methyltransferase is involved in inverse activation of Mg porphyrin and protoheme synthesis. - Plant J. 41: 282-290, 2005. Go to original source...
- Bagni N., Tassoni A.: Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plants. - Amino Acids 20: 301-317, 2001. Go to original source...
- Bogorad L.: Porphyrin synthesis. - Methods Enzymol. 5: 885-895, 1962. Go to original source...
- Caffarri S., Croce R., Breton J. et al.: The major antenna complex of photosystem II has a xanthophyll binding site not involved in light harvesting. - J. Biol. Chem. 276: 35924-35933, 2001. Go to original source...
- Costa M.L., Civello P.M., Chaves A.R. et al.: Effect of ethephon and 6-benzylaminopurine on chlorophyll degrading enzymes and a peroxidase-linked chlorophyll bleaching during postharvest senescence of broccoli (Brassica oleracea L.) at 20 C. - Postharvest Biol. Tec. 35: 191-199, 2005. Go to original source...
- Dei M.: Benzyladenine-induced stimulation of 5-aminolevulinic acid accumulation under various light intensities in levulinic acid-treated cotyledons of etiolated cucumber. - Physiol. Plantarum 64: 153-160, 1985. Go to original source...
- García-Plazaola J.I., Becerril J.M.: A rapid high-performance liquid chromatography method to measure lipophilic antioxidants in stressed plants: simultaneous determination of carotenoids and tocopherols. - Phytochem. Analysis 10: 307-313, 1999. Go to original source...
- Havaux M., DallOsto L., Cuiné S. et al.: The effect of zeaxanthin as the only xanthophyll on the structure and function of the photosynthetic apparatus in Arabidopsis thaliana. - J. Biol. Chem. 279: 13878-13888, 2004. Go to original source...
- Hieber A.D., Bugos R.C., Yamamoto Y.: Plant lipocalins: violaxanthin de-epoxidase and zeaxanthin epoxidase. - BBAProtein Struct. M. 1482: 84-91, 2000. Go to original source...
- Hodgins R.R., van Huystee R.B.: Rapid simultaneous estimation of protoporphyrin and Mg-porphyrins in higher plants. - J. Plant Physiol. 125: 311-323, 1986. Go to original source...
- Horn R., Grundmann G., Paulsen H.: Consecutive binding of chlorophylls a and b during the assembly in vitro of light harvesting chlorophyll a/b protein (LHCII b). - J. Mol. Biol. 366: 1045-1054, 2007. Go to original source...
- Hörtensteiner S.: Update on the biochemistry of chlorophyll breakdown. - Plant Mol. Biol. 82: 505-517, 2013. Go to original source...
- Horton P., Ruban A.: Molecular design of the photosystem II light-harvesting antenna: photosynthesis and photoprotection. - J. Exp. Bot. 56: 365-373, 2005.
- Hu X., Zhang Y., Shi Y. et al.: Effect of exogenous spermidine on polyamine content and metabolism in tomato exposed to salinity-alkalinity mixed stress. - Plant Physiol. Bioch. 57: 200-209, 2012. Go to original source...
- Ioannidis N.E., Kotzabasis K.: Effects of polyamines on the functionality of photosynthetic membrane in vivo and in vitro. - BBA-Bioenergetics 1767: 1372-1382, 2007.
- Jennings R.C., Bassi R., Garlaschi F.M. et al.: Distribution of the chlorophyll spectral forms in the chlorophyll-protein complexes of photosystem II antenna. - Biochemistry-US 32: 3203-3210, 2015.
- Jia T., Ito H., Tanaka A.: The chlorophyll b reductase NOL participates in regulating the antenna size of photosystem II in Arabidopsis thaliana. - Procedia Chem. 14: 422-427, 2015. Go to original source...
- Johnson M.P., Havaux M., Triantaphylidès et al.: Elevated zeaxanthin bound to oligomeric LHCII enhances the resistance of Arabidopsis to photooxidative stress by a lipid-protective, antioxidant mechanism. - J. Biol. Chem. 282: 22605-22618, 2007. Go to original source...
- Li J., Hu L., Zhang L. et al.: Exogenous spermidine is enhancing tomato tolerance to salinity. - alkalinity stress by regulating chloroplast antioxidant system and chlorophyll metabolism. - BMC Plant Biol. 15: 1-17, 2015. Go to original source...
- Li X., Zhao W., Sun X. et al.: Molecular cloning and characterization of violaxanthin de-epoxidase (CsVDE) in cucumber. - PLoS ONE 8: 64383, 2013. Go to original source...
- Li X.G., Meng Q.W., Jiang G.Q. et al.: The susceptibility of cucumber and sweet pepper to chilling under low irradiance is related to energy dissipation and water-water cycle. - Photosynthetica 41: 259-265, 2003. Go to original source...
- Masuda T., Tanaka A., Melis A.: Chlorophyll antenna size adjustments by irradiance in Dunaliella salina involve coordinate regulation of chlorophyll a oxygenase (CAO) and Lhcb gene expression. - Plant Mol. Biol. 51: 757-771, 2003. Go to original source...
- Moran R.: Formulae for determination of chlorophyllous pigments extracted with N,N-dimethylformamide. - Plant Physiol. 69:1376-1381, 1982. Go to original source...
- Parihar P., Singh S., Singh R. et al.: Effect of salinity stress on plants and its tolerance strategies: a review. - Environ. Sci. Pollut. R. 22: 4056-4075, 2015. Go to original source...
- Porra R.J.: Recent progress in porphyrin and chlorophyll biosynthesis. - Photochem. Photobiol. 65: 492-516, 1997. Go to original source...
- Pružinská A., Anders I., Aubry S. et al.: In vivo participation of red chlorophyll catabolite reductase in chlorophyll breakdown. - Plant Cell 19: 369-387, 2007. Go to original source...
- Rimington C.: Spectral-absorption coefficients of some porphyrins in the Soret-band region. - Biochem. J. 75: 620-623, 1960. Go to original source...
- Sáez P.L., Bravo L.A., Latsague M.I.: Light energy management in micropropagated plants of Castanea sativa, effects of photoinhibition. - Plant Sci. 201: 12-24, 2013. Go to original source...
- Sato R., Ito H., Tanaka A.: Chlorophyll b degradation by chlorophyll b reductase under high-light conditions. - Photosynth. Res. 126: 249-259, 2015. Go to original source...
- Sato Y., Morita R., Katsuma S. et al.: Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and lightharvesting complex II degradation during senescence in rice. - Plant J. 57: 120-131, 2009. Go to original source...
- Shu S., Yuan L.Y., Guo S.R. et al.: Effects of exogenous spermidine on photosynthesis, xanthophyll cycle and endogenous polyamines in cucumber seedlings exposed to salinity. - Afr. J. Biotechnol. 11: 6064-6074, 2012.
- Tanaka A., Tanaka R.: Chlorophyll metabolism. - Curr. Opin. Plant Biol. 9: 248-255,2006. Go to original source...
- Wang H.Y., Tang X.L., Wang H.L. et al.: Physiological responses of Kosteletzkya virginica to coastal wetland soil. - Sci. World J. 2015: 1-9, 2015. Go to original source...
- Yao N., Greenberg J.T.: Arabidopsis ACCELERATED CELL DEATH 2 modulates programmed cell death. - Plant Cell 18: 397-411, 2006. Go to original source...
- Yuan Y.H., Zhong M., Shu S. et al.: Effects of exogenous putrescine on leaf anatomy and carbohydrate metabolism in cucumber (Cucumis sativus L.) under salt stress. - J. Plant Growth Regul. 34: 451-464, 2015. Go to original source...
- Zhong M., Yuan Y.H., Shu S. et al.: Effects of exogenous putrescine on glycolysis and Krebs cycle metabolism in cucumber leaves subjected to salt stress. - Plant Growth Regul. 79: 319-330, 2016. Go to original source...