Photosynthetica, 2019 (vol. 57), issue 4

Photosynthetica 2019, 57(4):1176-1183 | DOI: 10.32615/ps.2019.129

Chlorophyll biosynthesis and epidermal characteristics of the leaves of a variegated variety vs. all-green variety of Chlorophytum capense

Y.Q. ZHAO1, L.H. DONG1, B. HUANG1, C.B. DING1, Y.E. CHEN1, Z.W. ZHANG2, Y. JIANG3, S. YUAN2, M. YUAN1
1 College of Life Science, Sichuan Agricultural University, 625014 Ya'an, China
2 College of Resources, Sichuan Agricultural University, 611130 Chengdu, China
3 Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, 610066 Chengdu, China

Chlorophytum capense var. medio-pictum is widely used as a houseplant with its central yellowish white stripe in green leaves. This study investigated chlorophyll biosynthesis, and epidermal characteristics in leaf stripes of different color. The results showed that yellowish white leaf stripes (YS) have a lower 5-aminolevulinic acid (ALA) content than that of green stripes. Meanwhile, YS had higher coproporphyrinogen III (Coprogen III) and Mg-protoporphyrin monomethyl ester (Mpe) contents, but the lower content of protoporphyrinogen IX (Proto IX) and protochlorophyllide (Pchlide) compared to green stripes, suggesting that the occurrence of yellowish white stripes may be attributed to the blocked ALA synthesis and the inhibited conversions from Coprogen III to Proto IX and Mpe to Pchlide. In addition, the upper and lower epidermal cells in YS were larger than those in green stripes. The chloroplasts developed normally in the guard cells of the YS epidermis, though almost no chloroplasts were detected in YS mesophyll cells.

Keywords: chlorophyll metabolic intermediates; epidermal micro-morphological characteristics; stomatal characteristics; variegated spider plant.

Received: March 14, 2019; Accepted: September 16, 2019; Prepublished online: October 31, 2019; Published: November 1, 2019Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
ZHAO, Y.Q., DONG, L.H., HUANG, B., DING, C.B., CHEN, Y.E., ZHANG, Z.W., ... YUAN, M. (2019). Chlorophyll biosynthesis and epidermal characteristics of the leaves of a variegated variety vs. all-green variety of Chlorophytum capense. Photosynthetica57(4), 1176-1183. doi: 10.32615/ps.2019.129.
Download citation

Supplementary files

Download file2230 supplementary file - Fig. 1S.docx

File size: 769.79 kB

References

  1. Beale S.I.: Green genes gleaned. - Trends Plant Sci. 10: 309-312, 2005. Go to original source...
  2. Berger D., Altmann T.: A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana. - Gene. Dev. 14: 1119-1131, 2000.
  3. Borek M., Bączek-Kwinta R., Rapacz M.: Photosynthetic activity of variegated leaves of Coleus × hybridus hort. cultivars characterised by chlorophyll fluorescence techniques. - Photosynthetica 54: 331-339, 2016. Go to original source...
  4. Bradford M.M.: Rapid and sensitive method for quantification of microgram quantities of protein utilizing principle of protein-dye-binding. - Anal. Biochem. 72: 248-254, 1976. Go to original source...
  5. Chen Y., Asano T., Fujiwara M.T. et al.: Plant cells without detectable plastids are generated in the crumpled leaf mutant of Arabidopsis thaliana. - Plant Cell Physiol. 50: 956-969, 2009. Go to original source...
  6. Chen Y.E., Liu W.J., Su Y.Q. et al.: Different response of photosystem II to short and long term drought stress in Arabidopsis thaliana. - Physiol. Plantarum 158: 225-235, 2016. Go to original source...
  7. Cornah J.E., Terry M.J., Smith A.G.: Green or red: what stops the traffic in the tetrapyrrole pathway? - Trends Plant Sci. 8: 224-230, 2003. Go to original source...
  8. Dong L.H., Han Q.H., Yang Y., Yuan M.: [Photosynthetic characteristics of Chlorophytum capense var. medio-pictum under short duration high light intensity.] - Acta Pratacult. Sin. 24: 245-252, 2015. [In Chinese]
  9. Driscoll S.P., Prins A., Olmos E. et al.: Specification of adaxial and abaxial stomata, epidermal structure and photosynthesis to CO2 enrichment in maize leaves. - J. Exp. Bot. 57: 381-390, 2006. Go to original source...
  10. Foudree A., Putarjunan A., Kambakam S. et al.: The mechanism of variegation in immutans provides insight into chloroplast biogenesis. - Front. Plant Sci. 3: 260, 2012. Go to original source...
  11. Fristedt R., Granath P., Vener A.V.: A protein phosphorylation threshold for functional stacking of plant photosynthetic membranes. - PLoS ONE 5: e10963, 2010. Go to original source...
  12. Horiguchi G., Fujikura U., Ferjani A. et al.: Large-scale histological analysis of leaf mutants using two simple leaf observation methods: identification of novel genetic pathways governing the size and shape of leaves. - Plant J. 48: 638-644, 2006. Go to original source...
  13. Hu H.Z., Zhang R., Shang A.Q. et al.: [Response of pigment content of golden leaf plants to light intensity.] - Acta Hortic. Sin. 3: 717-722, 2007. [In Chinese]
  14. Ilag L.L., Kumar A.M., Söll D.: Light regulation of chlorophyll biosynthesis at the level of 5-aminolevulinate formation in Arabidopsis. - Plant Cell 6: 265-275, 1994.
  15. Jia X.J., Dong L.H., Ding C.B. et al.: [Effects of drought stress on reactive oxygen species and their scavenging systems in Chlorophytum capense var. medio-pictum leaf.] - Acta Pratacult. Sin. 22: 248-255, 2013. [In Chinese]
  16. Jia X.J., Ran H.C., Zeng S.H. et al.: [Study on leaf anatomical structure of Chlorophytum capense var. medio-pictum.] - J. Sichuan Agric. Univ. 29: 199-202, 2011. [In Chinese]
  17. Jung K.H., Hur J., Ryu C.H. et al.: Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. - Plant Cell Physiol. 44: 463-472, 2003. Go to original source...
  18. Kato Y., Kouso T., Sakamoto W.: Variegated tobacco leaves generated by chloroplast FtsH suppression: Implications of FtsH function in the maintenance of thylakoid membranes. - Plant Cell Physiol. 53: 391-404, 2012. Go to original source...
  19. Khalekuzzaman M.D., Kim K.J., Kim H.J. et al.: Comparison of green and variegated foliage plant species based on chlorophyll fluorescence parameters under different light intensities. - Pak. J. Bot. 47: 1709-1715, 2015.
  20. Lichtenthaler H., Wellburn A.: Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. - Biochem. Soc. T. 11: 591-592, 1983. Go to original source...
  21. Liu Z.L., Yuan S., Liu W.J. et al.: Mutation mechanism of chlorophyll-less barley mutant NYB. - Photosynthetica 46: 73-78, 2008. Go to original source...
  22. Masuda T., Fujita Y.: Regulation and evolution of chlorophyll metabolism. - Photoch. Photobio. Sci. 7: 1131-1149, 2008. Go to original source...
  23. Meskauskiene R., Nater M., Goslings D. et al.: FLU: A negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. -P. Natl. Acad. Sci. USA 98: 12826-12831, 2001. Go to original source...
  24. Nagata N., Tanaka R., Satoh S., Tanaka A.: Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. - Plant Cell 17: 233-240, 2005. Go to original source...
  25. Nakanishi H., Nozue H., Suzuki K. et al.: Characterization of the Arabidopsis thaliana mutant pcb2 which accumulates divinyl chlorophylls. - Plant Cell Physiol. 46: 467-473, 2005. Go to original source...
  26. Oosawa N., Masuda T., Awai K. et al.: Identification and light-induced expression of a novel gene of NADPH-protochlorophyllide oxidoreductase isoform in Arabidopsis thaliana. - FEBS Lett. 474: 133-136, 2000. Go to original source...
  27. Plumley F.G., Schmidt G.W.: Light-harvesting chlorophyll a/b complexes: Interdependent pigment synthesis and protein assembly. - Plant Cell 7: 689-704, 1995.
  28. Porra R.J., Thompson W.A., Kriedemann P.E.: Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. - BBA-Bioenergetics 975: 384-394, 1989. Go to original source...
  29. Rüdiger W.: Biosynthesis of chlorophyll b and the chlorophyll cycle. - Photosynth. Res. 74: 187-193, 2002. Go to original source...
  30. Sims D.A., Gamon J.A.: Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. - Remote Sens. Environ. 81: 337-354, 2002. Go to original source...
  31. Smith A.G., Witty M.: Heme, Chlorophyll, and Bilins. Methods and Protocols. Pp. 340. Humana Press, Torowa 2002. Go to original source...
  32. Tanaka A., Tanaka R.: Chlorophyll metabolism. - Curr. Opin. Plant Biol. 9: 248-255, 2006. Go to original source...
  33. Tanaka R., Tanaka A.: Tetrapyrrole biosynthesis in higher plants. -Annu. Rev. Plant Biol. 58: 321-346, 2007. Go to original source...
  34. Yuan M., Dong L.H., Jia X.J. et al.: [Effects of canopy position on leaf structures in golden-leaf privet (Ligustrum × vicaryi).] -Bull. Bot. Res. 34: 188-193, 2014. [In Chinese]
  35. Yuan M., Xu M.Y., Yuan S. et al.: Light regulation to chlorophyll synthesis and plastid development of the chlorophyll-less golden-leaf privet. - J. Integr. Plant Biol. 52: 809-816, 2010. Go to original source...
  36. Yuan M., Zhao Y.Q., Zhang Z.W. et al.: Light regulates transcription of chlorophyll biosynthetic genes during chloroplast biogenesis. - Crit. Rev. Plant Sci. 36: 35-54, 2017. Go to original source...
  37. Zhang H., Li J., Yoo J.H. et al.: Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. - Plant Mol. Biol. 62: 325-337, 2006. Go to original source...
  38. Zhang Q., Zhang M., Ding Y. et al.: Composition of photosynthetic pigments and photosynthetic characteristics in green and yellow sectors of the variegated Aucuba japonica 'Variegata' leaves. - Flora 240: 25-33, 2018. Go to original source...